
COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 1 of 96 Submission date: 2017-07-17

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D2.3 The COMPOSITION architecture specification I

Date: 2017-07-17

Version 1.1

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 2 of 96 Submission date: 2017-07-17

Document control page

Document file: D2.3 The COMPOSITION architecture specification 1.1.docx
Document version: 1.1
Document owner: COMPOSITION

Work package: WP2 Use Case Driven Requirements Engineering and Architecture
Task: Task 2.3 COMPOSITION Architecture
Deliverable type: R

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Mathias Axling 2017-03-28 Initial version

0.11 Mathias Axling 2017-05-18 Workshop updates

0.12 Dario Bonino 2017-06-01 Added required contributions

0.2 Dimosthenis Ioannidis, Nikolaos
Kaklanis, Alexandros Nizamis

2017-06-09 Functional view descriptions: Simulation and
forecasting tool, Matchmaker.
Information view descriptions: Digital Factory
Model, Marketplace Ontology

0.3 Paolo Vergori, Matteo Pardi,
Gianluca Insolvibile, Jesús
Benedicto

2017-06-16 ISMB, NXT, ATOS contributions added

0.4 Javier Romero 2017-06-19 ATOS security contribution added

0.5 Mathias Axling 2017-06-21 Merged contributions, added content

0.6 José Ángel Carvajal Soto,
Junhong Liang

2017-06-23 FIT contributions

0.7 Mathias Axling 2017-06-26 Edited version, added content

0.8 Mathias Axling, Peeter Kool,
Matts Ahlsen

2017-06-28 Edited version, added content

0.9 Mathias Axling, Peter Rosengren 2017-06-29 Contribution to be added

0.91 Mathias Axling 2017-06-29 Ready for peer review

1.0 Mathias Axling, Peter Rosengren 2017-07-10 Peer Review Comments incorporated

1.1 Peter Rosengren 2017-07-17 Updated conceptual architecture. Final
Version

Internal review history:

Reviewed by Date Summary of comments

Dimitris Gkortzis, ELDIA 2017-07-07 Minor comments

Martina Beer, FIT-WI 2017-06-30 Minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 3 of 96 Submission date: 2017-07-17

Index:
1 Executive Summary ... 4

1.1 Content and structure of this deliverable ... 4

2 Terminology .. 5

3 Introduction .. 7
3.1 Purpose, context and scope of this deliverable ... 7
3.2 Architectural Design and Documentation Approach .. 7

3.2.1 Methodology .. 7
3.2.2 Reference Architecture Model Industrie 4.0 .. 8

4 Stakeholders, Concerns and Architecture Decisions ..14
4.1 Stakeholders ..14
4.2 Requirements...14
4.3 Scenarios ...14
4.4 Concerns and Architectural Decisions ...15

4.4.1 Concerns ..15
4.4.2 Architectural decisions ...17

5 Architectural views ..19
5.1 Overview ..19
5.2 Context View ..20

5.2.1 Concepts ..21
5.3 Functional View..24

5.3.1 High-level functional view ..24
5.3.2 Market Event Broker and Real-time Multi-Protocol Event Broker27
5.3.3 Intra-factory Interoperability Layer ...29
5.3.4 Big Data Analytics ..32
5.3.5 Deep Learning Toolkit ..34
5.3.6 Decision Support System ..37
5.3.7 Simulation and Forecasting ...40
5.3.8 Matchmaker ...41
5.3.9 Marketplace ...43
5.3.10 Marketplace Management ..53
5.3.11 Security Framework ...55

5.4 Information View ..59
5.4.1 Data Models ...59
5.4.2 Data Persistence ..70
5.4.3 Data Flow ...71

5.5 Deployment View ...79
5.5.1 Docker ..79

6 System Quality Perspectives ..82
6.1 Security Perspective ..82

6.1.1 Authentication and Authorization ...82
6.1.2 Blockchain Uses ..82
6.1.3 Cyber-Security ...87
6.1.4 Transport Layer ..88

6.2 Scalability Perspective ...88
6.2.1 Basic Concepts and Terminology ..88
6.2.2 Issue identification and analysis ..90
6.2.3 Scenarios for scalability requirements of the system ..90
6.2.4 Performance and Scalability Design ..91
6.2.5 COMPOSITION Scalability Design ..92

7 Summary and future work ...93

8 References ..94

9 List of Figures and Tables ...95
9.1 Figures ...95
9.2 Tables ..96

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 4 of 96 Submission date: 2017-07-17

1 Executive Summary

In this deliverable, the first version of the software architecture for the COMPOSITION project is described.

COMPOSITION has two main goals: The first goal is to integrate data along the value chain inside a factory
into one integrated information management system (IIMS) combining physical world, simulation, planning
and forecasting data to enhance re-configurability, scalability and optimisation of resources and processes
inside the factory to optimise manufacturing and logistics processes.

The second goal is to create a (semi-)automatic ecosystem, which extends the local IIMS concept to a
holistic and collaborative system incorporating and interlinking both the supply and the value Chains. This
should be able to dynamically adapt to changing market requirements.

The objectives are achieved by the use of number of IoT enabling technologies and services together with
sophisticated big data analytics and deep learning as well as a trusted framework based on blockchain
technology. The main services realised by COMPOSITION are:

 Material and Component Tracking

 Product Quality Monitoring

 Manufacturing Forecasting

 Automated Procurement

 Ecosystem Collaboration Framework

The COMPOSITION architecture has been designed with consideration to compliance with RAMI 4.0
(Reference Architecture Model Industrie 4.0).

1.1 Content and structure of this deliverable

The deliverable closely follows the structure outlined by the selected documentation approach. The
remainder of the document is structured as follows:

Section 2 - Terminology: defines the terminology specific to the COMPOSITION domain.

Section 3 - Introduction: identifies the purpose, scope and context of the deliverable, and the architecture
design and description methodology used.

Section 4 – Stakeholders, provides an overview of the stakeholders, concerns, and requirements that drive
the architecture design.

Section 5 - Architectural views: documents the architecture in four views: Context, Functional, Information,
and Development.

Section 6 - System Quality Perspectives: documents quality attributes cross-cutting several views in two
architecture perspectives: Security and Scalability.

Section 7 - Summary and future work: presents a summary of the current state of architecture development
and how future architecture design will proceed.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 5 of 96 Submission date: 2017-07-17

2 Terminology

The currently adopted domain-specific terminology used in the remainder of the document is presented in
Table 1. COMPOSITION-specific terminology below.

Table 1. COMPOSITION-specific terminology.

Term Definition

Agent Container An agent container is a set of intelligent agents interacting through the same,
shared transport protocol and referring to shared platform services such as the
Directory Facilitator, DF and the Agent Management Service, AMS.

COMPOSITION
Marketplace

o A COMPOSITION Marketplace is an agent container.

Closed Marketplace
 COMPOSITION Marketplace owned by one stakeholder and typically offered to a

trusted subset of other COMPOSITION stakeholders.

 The Closed Marketplace can be public or private.

o A public, closed market will accept join requests by agents living in the Open
Marketplace

o A private, closed marketplace will accept agents only by invitation.

 A Closed Marketplace is structurally equivalent to the open marketplace

 A Closed Marketplace is physically separated to the Open Marketplace and has
typically a separate infrastructure of shared platform services including the broker,
AMS, DF, etc.

Virtual Marketplace
 A Virtual Marketplace, or group is a "multicast" group of agents interacting with

each other in the context of a negotiation.

 The group can be:

o – persistent over negotiations or

o – just be defined for a single negotiation exchange.

 A Virtual Marketplace lives in, and exploits the infrastructure of the Open
Marketplace.

Integrated Information
Management System
(IIMS)

The Integrated Information Management System is a digital automation
framework that optimizes the manufacturing processes by exploiting existing data,
knowledge and tools to increase productivity and dynamically adapt to changing
market requirements.

COMPOSITION
Ecosystem

The supply chain part of a COMPOSITION system, implemented by a
COMPOSITION Marketplace and involving suppliers, producers and logistics
services.

Supply chain The sequence of processes involved in the production and distribution of a
commodity

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 6 of 96 Submission date: 2017-07-17

Value chain The process or activities by which a company adds value to an article, including
production, marketing, and the provision of after-sales service.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 7 of 96 Submission date: 2017-07-17

3 Introduction

The results of the software architecture design activities for the COMPOSITION system is reported in this
deliverable, D2.3: “The COMPOSITION architecture specification I”. It provides a description of the current
state of the architecture for the M2 milestone in month 10 in the project. This will be followed by the D2.4
“The COMPOSITION architecture specification II”, providing an updated description at month 24. The system
architecture design activities are carried out in Work Package 2 (WP2), “Use Case Driven Requirements
Engineering and Architecture”, in the COMPOSITION work package structure defined by the project
specification (COMPOSITION, 2016).

3.1 Purpose, context and scope of this deliverable

The purpose of this report is to provide a high-level overview of the COMPOSITION system: document the
main elements of the system and the relations between these elements. It also documents the design
decisions that affect the system on an architectural level and the stakeholder concerns - expressed in the
project specification and user requirements – that drive the architecture design. Detailed descriptions of the
elements of the architecture, e.g. the Security Framework, Decision Support System or Digital Factory
Model, will be available as separate deliverables as outlined in the project specification. The reader should
refer to these for implementation details and specifications. This deliverable will focus on the fundamental
concepts and properties of the COMPOSITION system.

Several key functional requirements and architectural constraints are defined in the project specification,
available at the start of the project. Gathering and validation of requirements and definition of pilot scenarios
and use cases have been performed in parallel to the architecture definition process. The results of these
activities have been reported in D2.1 “Industrial use cases for an Integrated Information Management
System” and D2.2 “Initial requirements specification”, which have provided input to the architecture design
activities in WP2. The D2.5 report “Lessons Learned and updated requirements report I” will provide an
update of the requirements which will provide input to D2.4.

3.2 Architectural Design and Documentation Approach

The documentation will adhere to the IEEE 42010 standard, using several viewpoints to frame the concerns
of the system stakeholders and illustrate the design decisions taken. Specifically, the IEEE 42010 compliant
framework presented in (Rozanski & Woods, 2012) will be used. This has been extended with the concept of
perspectives, which are used to evaluate quality attributes cross-cutting several viewpoints, e.g. security,
evolvability or scalability.

The architecture reference model RAMI 4.0, developed in the Industrie 4.0, is used for integration of
research and technical development efforts in the area of industrial IoT. This collaboration and integration
with other initiatives is a strategic objective of the project (COMPOSITION, 2016).

3.2.1 Methodology

The inception phase (Kruchten, 2004) of the architecture design is documented in the project specification,
which introduces several canonical architectural elements connected to technical objectives, tasks and
deliverables, providing a basic functional decomposition of the system. An initial list of system components
was derived from this source in architecture workshops early in the project. Developing and integrating these
components is necessary to ensure that the strategic and technical objectives of the project can be met.

In subsequent workshops, this bottom-up design approach has been complemented by additional
components and design decisions on standards and architectural mechanisms (Kruchten, 2004) to integrate
the components. The design of individual components has been carried out in parallel to the architecture
design. Evaluation and revision of this design is conducted continuously in workshops and design meetings
(no formal architecture evaluation has been performed). As the components mature and feedback from pilot
development and revised requirements are produced, the architecture design will be predominantly top-
down. With the component design in place, strategies and mechanisms for scalability, evolvability and other
quality attributes will be can be elaborated.

The COMPOSITION architecture design process and the architecture description in this document follows
the ISO/IEC/IEEE 42010 “System and software engineering – Architecture description”
(ISO/IEC/IEEE42010, 2011), which superseded the IEEE 1471 “Recommended Practice for Architectural

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 8 of 96 Submission date: 2017-07-17

Description for Software Intensive Systems” (IEEE, 2000). See the conceptual model of architecture
descriptions from (ISO/IEC/IEEE42010, 2011) below.

Figure 1. ISO/IEC/IEEE 42010 Architecture Description Conceptual Model
1
.

As can be seen from the ISO/IEX/IEEE 42010 conceptual model of architecture descriptions, a viewpoint
uses a set of model kinds to frame a specific set of concerns that stakeholders have about a system.
However, quality properties such as security, performance or availability need to be considered across
several viewpoints. In (Rozanski & Woods, 2012), the complementary concept of architectural perspectives
is introduced to address these cross-cutting concerns.

For this first version of the architecture documentation we have addressed the system design from four
viewpoints – context, functional, information, and deployment - and two perspectives, the security
perspective and the scalability perspective. Further on in the architecture design process, we expect to
employ other viewpoints, e.g. operational and concurrency, and address other quality properties, e.g.
evolvability.

3.2.2 Reference Architecture Model Industrie 4.0

In COMPOSITION, the he Reference Architectural Model Industrie 4.0 (RAMI 4.0)
2
 will be adopted to

communicate the scope and design of the system, to further collaboration and integration with other relevant
initiatives by framing the developed concepts and technologies in a common model.

3

 Background & purpose 3.2.2.1

RAMI 4.0 is a reference architecture model for Industrial Internet of Things (IIoT). The first version has been
developed by the Industrie 4.0 platform and submitted as DIN SPEC 91345. RAMI 4.0 is modeled on Smart
Grid Architecture Model (SGAM), IEC 62262, Enterprise-control system integration (IEC62264, 2013) and
the IEC 62890 ”Life-cycle management for systems and products used in industrial-process measurement,
control and automation” (IEC, 2013). The focus of RAMI 4.0 is on manufacturing, primarily modelling
systems for the production process and product life cycle.

1
 http://www.iso-architecture.org/42010/cm/

2
 https://www.zvei.org/fileadmin/user_upload/Themen/Industrie_4.0/Das_Referenzarchitekturmodell_RAMI_4.0_und_die_Industrie_4.0-

Komponente/pdf/5305_Publikation_GMA_Status_Report_ZVEI_Reference_Architecture_Model.pdf
3
 Pictures in this section copyright “Umsezungsstrategie Industrie 4.0 – Ergebnisbericht, Berlin, April 2015”

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 9 of 96 Submission date: 2017-07-17

Figure 2. The three dimensions of the RAMI 4.0. (Status Report Reference Architecture Model Industrie 4.0

(RAMI4.0), 2015).

In the three dimensional model, existing standards and architectures and candidate solutions can be plotted,
overlaps and gaps can be identified and resolved. It provides a map of Industry 4.0 components, solutions
and requirements by the three axes IT Layers, Hierarchy Levels and Life Cycle and Value Stream.

The purpose of the reference architecture model is to promote common understanding of different
architectures for industry 4.0. It can be used to derive specific architecture models and align existing
solutions. Examples of applications are:

 Provide a shared understanding of the function provided by every layer and the defined interfaces

between the layers.

 To see where existing and emerging architectures fit in, and allow discussing associations and

details of components.

 Identification of overlaps and the scope of preferred solutions

 Identification of existing standards, closure of gaps and loopholes in standards, minimization of the

number of standards involved

 Identification of use cases for Industry 4.0

 Model 3.2.2.2

The six layers on the vertical axis represent a layered IT system structure, with loose coupling between the
layers and high cohesion within each layer. The layering is strict; i.e. components in a layer may only
communicate internally or with adjacent layers.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 10 of 96 Submission date: 2017-07-17

Figure 3. The IT Layers of RAMI 4.0.

3.2.2.2.1 Asset Layer

The asset layer spans the physical components of a system; physical things in the real world. E.g.
production lines, manufacturing machinery, field devices, products and also the humans involved.

3.2.2.2.2 Integration Layer

The mapping from the physical world to the digital is performed by the Integration layer, which performs
provisioning of information on the assets in a form which can be processed by computer. This involves all
digitization of assets, such as connected sensors and other field devices, but also Human Machine
Interfaces (HMI).

3.2.2.2.3 Communication Layer

The Communication Layer performs transmission of data and files. It standardizes the communication from
the Integration Layer, providing uniform data formats, protocols and interfaces in the direction of the
Information Layer. It also provisions the services for controlling the Integration Layer.

3.2.2.2.4 Information Layer

In the Information Layer, data and events are processed, integrated and persisted. This layer ensures the
integrity of data, performs message translation and annotation and manages data persistence. It provides
the service interfaces to access structured data from the Functional Layer and also applies event rules and
transformation of event to the models and formats used in that layer. This is the run-time environment for
Complex Event Processing (CEP), data APIs and data persistence mechanisms.

3.2.2.2.5 Function Layer

The Function Layer is the primary location of rules and decision-making logic and contains the formal
descriptions of functions and service models. It is the run time environment for applications and services that
support the business processes.

3.2.2.2.6 Business Layer

The services provided by the Functional Layer are orchestrated by the Business Layer. It maps the services
to the business (domain) model and the business process models. It also models the business rules, legal
and regulatory constraints of the system. The Business Layers receives events that advance, link and
integrate the business processes.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 11 of 96 Submission date: 2017-07-17

3.2.2.2.7 Hierarchy Levels

Figure 4. Hierarchy Levels of RAMI 4.0 (Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0),
2015).

The right horizontal axis represents a hierarchy of different functionalities within factories or facilities. The
ones shown in the pyramid in Figure 4, from "Field device" to "Enterprise" are derived from the IEC 62264
(IEC62264, 2013) international standards series for enterprise IT and control systems. The standard
originated by modelling "wired" connections between functions performed by hardware in the factory, but
today the functions are implemented in software. To represent the Industry 4.0 environment, the
functionalities of IEC 62264 have been expanded to include workpieces, labelled “Product” (both the type
and the instance, through the entire lifecycle), and the connection to the Internet of Things and Services,
labelled “Connected World”. The "Connected World" involves the manufacturing ecosystem: groups of
factories, collaborations with external engineering firms, component suppliers and customers.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 12 of 96 Submission date: 2017-07-17

 Life Cycle and Value Stream 3.2.2.3

Figure 5. Type and instance lifecycles in RAMI 4.0 (Status Report Reference Architecture Model Industrie 4.0
(RAMI4.0), 2015).

The left horizontal axis in RAMI 4.0 represents the life cycle of facilities and products, based on the IEC
62890 (IEC, 2013). Distinction is made between types and instances; design and prototyping involve types,
and each actual product being manufactured is an instance of this type.

As illustrated by Figure 5, this life cycle and value stream does not only cover the planning, design,
production and maintenance of parts and products, but also types and instances of production equipment
and factories.

 Industrie 4.0 Component Administrative shell 3.2.2.4

An I4.0 component is the digitization of assets in the manufacturing process: it can be a factory, a production
system, an individual station, or an assembly inside a machine. It consists of one or more assets and an
administrative shell. The administrative shell is the virtual representation of an asset. The manifest of the
administration shell describes the data provided by the asset and the resource manager provides access to
the data and functionality of the asset. The I4.0 component is located within the layers of RAMI 4.0, up to the
Functional Layer. It can adopt various positions in the life cycle and value stream, and occupy various
hierarchical levels.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 13 of 96 Submission date: 2017-07-17

Figure 6. The I4.0 component (Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0), 2015).

An asset may have several administration shells for different purposes and aspects of the manufacturing
process. I4.0 components may be nested and accessed directly of as part of the implementation of the
services of another I4.0 component. The administrative shell may be deployed in the run-time environment of
the asset – if it possesses the necessary computational capabilities – or remotely, e.g. in a cloud
environment.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 14 of 96 Submission date: 2017-07-17

4 Stakeholders, Concerns and Architecture Decisions

This section describes the stakeholders of the COMPOSITION system and their concerns. These concerns
are expressed in different form and in different artefacts. Scenarios and requirements express some of these
concerns. Although the system envisioned in the project specification is scoped to address the needs of all
these, priorities must be made. Finally, architecture decisions pertaining to fundamental concerns are
documented.

4.1 Stakeholders

The COMPOSITION system has several stakeholders, whose interests and concerns are expressed in the
project governing documents. These may be categorized in groups, here we use the canonical ones from
(Rozanski & Woods, 2012). The three key stakeholder groups for COMPOSTION have been identified as
developers and maintainers (grouped together since these are basically the same in this case), acquirers,
and users.

Acquirers are the European commission in H2020 framework, whose goals and concerns are stated in the
project specification (COMPOSITION, 2016) and the technical and strategic objectives therein. These
describe the main goals of the system, some software artefacts that will be delivered, and the need for
collaboration with other projects, and re-use of results, in the industrial IoT and factory of the future
programmes.

The developer stakeholder group consist of the technical partners in the project, commercial- and research-
oriented. The concern of commercial partners is to produce exploitable results that can be sold as products
or services, and produce innovations that can provide a competitive advantage in their respective market.
Research organizations need to produce significant contributions to their respective field and build platforms
and knowledge for further research. The concerns of these stakeholders are captured in the innovation and
exploitation documents, the DOA and to some extent in the requirements.

The user stakeholder group are the pilot partners and future users of the system, whose concerns are mainly
expressed in the scenarios, use cases (D2.1 “Industrial Use Cases for an Integrated Information
Management System”) and requirements (D2.2 “Initial requirements specification”). These capture the needs
of the manufacturing industry and the priorities of the pilot partners.

4.2 Requirements

In a process parallel to the scenario development, described in report D2.2 “Initial requirements
specification”, several user requirements have been elicited. These have been entered into the project
management system (Atlassian JIRA) and complemented by additional non-functional and operational
requirements added by the developer stakeholders. In this initial requirements phase, 105 requirements
were gathered, quality checked and improved.

The development efforts will be guided by the tasks in the project management system directly connected to
the requirements. The current list of requirements will be revised in future design iterations and the results
reported in D2.5 “Lessons Learned and updated requirements report I” and D2.6 “Lessons Learned and
updated requirements report II”.

4.3 Scenarios

Scenario workshops with mainly the user stakeholder group and some participants from the developer
stakeholder group have been conducted to evaluate how COMPOSITION could optimise processes for
manufacturing, logistics and supply chain collaboration within the scope of the pilots defined by Technical
Objective 3.1. This resulted in nine (functional) scenarios describing application areas of the COMPOSITION
system. These were detailed in 16 use cases for the pilots that capture user stakeholder concerns,
presented in D2.1 “Industrial Use Cases for an Integrated Information Management System”. These
scenarios were prioritized by the developer and user stakeholders and two scenarios, one intra-factory
(value chain) and one inter-factory (supply chain) of these were selected as the first scenarios to be
implemented, together with corresponding use cases. These were selected on the basis of importance to the
user stakeholders and the developer partner’s estimate of the coverage they provide of the systems intended
functionality.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 15 of 96 Submission date: 2017-07-17

The scenarios the workshop prioritized to work through to ensure that the architecture provides coverage of
the base functional requirements are:

INTRA-2 Predictive Maintenance

Replacing a machine part on a schedule, possibly before it is needed, causes unnecessary costs.
Conversely, a failing machine means that products being processed may have to be discarded and that the
manufacturing process will have to be stopped. The COMPOSITION system will predict failures of critical
components based on collected real-time information from the production equipment, e.g. levels and
temperature of solvents, noise levels or vibration of machines.

INTRA-2: UC-BSL-2 Predictive Maintenance

The predictive maintenance scenario is instantiated by this use case in which the system will monitor and
analyse fan parameters such as noise and current change. Users will be able to access fan performance
data and will be notified of impending fan failure. This scenario involves the system components from
sensors through intra-factory integration, to big data analytics, deep learning and human-machine interfaces.

INTER-1 Scrap Metal Management

The system will automatically collect and compare data of scrap metal levels per bin in the factory. When the
scrap metal reaches a threshold, that indicates that the bin is or will be full soon, an event is generated by
the system. The system may learn which level is accurate for the threshold. The system may use price
forecasting to select how and when to negotiate for the price of scrap metal. The event initiates a request for
pick-up through the factory COMPOSITION agent system. Other agents representing scrap metal recycling
companies in the marketplace will negotiate for the contract. Selected and rejected companies will be
notified automatically about the final decision. A pick-up date and time is agreed with the selected scrap
metal recycling company and drivers are notified. Human control gates may be implemented at points in the
process.

INTER-1: UC-KLE-4 Scrap metal collection process

This use case deals with optimizing the scrap metal collection process. The waste management companies
want to optimize the transportation for the scrap metal collection. The sensors monitoring the scrap metal are
continually feeding information in the level, allowing waste management companies to plan. Negotiation
between agents on pick-up arrangements are preformed and all parties are notified of the outcome.

The above scenarios will be the primary instruments to use for analysing the functional suitability of the
design. The functional scenarios will be complemented with system quality scenarios describing the system
reactions and responses to changes in its environment, e.g. workload fluctuations, security threats,
operational and deployment modifications.

4.4 Concerns and Architectural Decisions

4.4.1 Concerns

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 16 of 96 Submission date: 2017-07-17

The goals of the COMPOSITION system are stated in the strategic and technical objectives in the project
specification (COMPOSITION, 2016) and can be found summarized in the table below. These are necessary
objectives stated by the acquirers of the system. There is an emphasis on interoperability, integration and
analysis of information from heterogenous sources, dynamic adaptation to market requirements and
innovativeness.

The developer stakeholders, i.e. the technical partners, are interested in the exploitability of COMPOSITION
results. The system should be compatible with the existing products and stakeholders should be able to
supply components and services complementing and extending the system on the COMPOSITION
aftermarket. Developer stakeholders use different programming languages and make use of existing
software frameworks in the project.

Developer and maintainer stakeholders also have an interest of offering their (software) services using the
COMPOSITION system (D2.1).

This creates requirements for the extensibility and evolvability qualities of the system, and the need of a set
of standards and interfaces that companies developing a component extending the COMPOSITION system
can adhere to. Components should not use programming language or platform specific inter component
communication. Opens standards should be used and special consideration should be taken to the ones
already supported by the development stakeholder products.

The formats, protocols and interfaces (“open, standard connectors”) should be designed to enable both use
of and extension of FI-WARE and FITMAN Generic Enablers as well as the integration of concepts and
technologies from other initiatives in Industrial IoT.

The context in which the COMPOSITION system will be deployed is expected to be heterogenous, with
different factories using different infrastructure. The architecture design will have to take this into account
and allow for flexibility in deployment of components and adaptation to existing infrastructure.

COMPOSITION services and applications should be possible to deploy independently of each other under
different licences to accommodate for the interests of the commercial consortium partners. Licensing must

 Strategic Objective 1: Create a digital automation framework (the COMPOSITION IIMS) that optimizes the
manufacturing processes by exploiting existing data, knowledge and tools to increase productivity and
dynamically adapt to changing market requirements.

o Technical Objective 1.1: Innovate and extend the FI-WARE and FITMAN catalogues of Generic
Enablers with an innovative CPS-aware library of open, standard connectors specialised for
real-time architectures for interoperability in manufacturing to ease the integration and coupling
of data, information and knowledge from existing, heterogeneous, sources in the factory.

o Technical Objective 1.2: Research and develop innovative, multi-level, cross-domain analytics
detecting complex patterns in manufacturing big data sets, and implementing a continuous deep
learning toolkit for re-adaptation and adjustments of operational metrics, in real time.

o Technical Objective 1.3: Develop a set of modelling and simulation tools including a Decision
Support System (DSS) to help users build the digital models of processes and products and to
forecast impacts of reconfigurations of the production process.

 Strategic Objective 2: Enable the COMPOSITION ecosystem by designing and implementing a technical
operating system supporting connected and interoperable factories, with their stakeholders and, by
optimising manufacturing and logistics processes through new innovative services and practices.

o Technical Objective 2.1: Design and implement a Log Oriented Architecture, based on
blockchain technology, ensuring the trusted, secure and automated exchange of supply chain
data among all authorized stakeholders, to connect factories and support interoperability and
product traceability along the supply chain.

o Technical Objective 2.2: Provide end-to-end security from factory floor to cloud services
encompassing major mechanisms in a seamless and fully integrated manner including
authentication and access control, transport security, as well as system security, while
maintaining suitable levels of IPR and knowledge protection.

o Technical Objective 2.3: Develop an interoperable agent-based marketplace, where each party
is represented by one or more agents, endowed with sufficient autonomy to set up exchanges
and to enable new economic collaboration models.

 Strategic Objective 3: Demonstrate and validate reference implementations of the full COMPOSITION
ecosystem in real value and supply chains to foster take-up and re-use at European level.

o Technical Objective 3.1: Implement, demonstrate and validate the COMPOSITION operating
system in two multi-sided pilots.

o Technical Objective 3.2: Collaborate and integrate successful concepts and technologies with
other relevant initiatives such as Industrial Data Space and FITMAN.

Figure 7. The strategical and technical objectives of COMPOSITION.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 17 of 96 Submission date: 2017-07-17

allow for commercial usage of individual components or the entire system. Incorporating or applying open
source licensing affecting the possibility of commercial exploitation, such as GPL, is explicitly forbidden
(COMPOSITION, 2016).

Security should be seamlessly integrated in the entire system and allow for integration of components from
external sources into the COMPOSITION platform. The use of open standards is thus a requirement from the
security perspective as well.

4.4.2 Architectural decisions

In architecture workshops and discussions, with input from the design of components, a number of system-
level decisions for architectural mechanisms (Kruchten, 2004) have been made. Below is a summary of
major architectural decisions at the time of writing.

The COMPOSITION project specification (COMPOSITION, 2016) provides a basic functional decomposition
of the system. This considers the objectives of the acquirers, the frameworks and components brought to the
project by developer stakeholders and provides a division of development work in alignment with the project
plan. The decision was made to build the system bottom up starting from the components given by the
breakdown in the project specification and revise this as needed.

Existing components form developer partners will be integrated in the system. COMPOSITION will re-use
earlier results and frameworks familiar to the partners, e.g. the LinkSmart Middleware and the Symphony
BMS. This provides a code base to build on and provides compatibility with existing product lines, enhancing
exploitability of the results for the partners. The system should also allow for the use of other frameworks
providing similar functionality.

 Communication mechanism 4.4.2.1

Given the emphasis of extensibility, interoperability, analysis of heterogenous data and loose coupling in the
COMPOSITION system, the general communication mechanism for the system will be data-centric and
messaging-based, where factory data is published and interested components (performing e.g. analytical or
supervisory functions) subscribe to this data without direct addressing between components. This will be
built using standard message broker components with extensions for security, multi-protocol and multi-format
support.

The AMQP protocol will be used for component communication and message routing. It is a very flexible
protocol that may be configured for different message routing schemes and emulation of other protocols
such as MQTT, STOMP, XMPP or the Publish-Subscribe Broker for the Constrained Application Protocol
(CoAP)

4
. The project has selected RabbitMQ as the implementation of this mechanism. RabbitMQ is open

source software, extensible and has support for multiple platforms. As MQTT may be transparently used by
clients on top of an AMQP broker architecture, this protocol will be used for the components that already
implement MQTT support.

The focus of COMPOSITION is on functionality that requires “human scale” response time, e.g. visualization,
simulation, forecasting rather than real-time device control in the sub-millisecond range. It is therefore not
required to build on very fast device-device integration protocols (e.g. DDS) as a communication layer, but
rather include such protocols as a possible asset layer should it be needed. Interoperability and integration of
heterogenous data sources for analysis, optimization and decision support are the primary concerns for the
communication mechanism design.

The IoT interoperability functionality will build on LinkSmart, which uses MQTT as its message-based
communication mechanism. The developer stakeholders have extensive experience with the LinkSmart
platform, which has been used in several large IoT projects previously, and using this will be effective in
developing the core interoperability functionality of the project. However, alternatives were considered.
Standards such as the Foundation Open Platform Communications-Unified Architecture (OPC-UA)

5
 and the

Data Distribution Service (DDS)
6
 are already used in industrial applications. In terms of architectures for

industrial applications, the proposed solution has more similarities with the message-centric design of DDS
than the more device-centric model of OPC-UA. However, the LinkSmart platform allows both for directly
addressing devices and requesting data, and subscribing to data by type without knowledge about the

4
 https://www.rabbitmq.com/community-plugins.html

5
 https://opcfoundation.org/about/opc-technologies/opc-ua/

6
 http://www.omg.org/spec/DDS/

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 18 of 96 Submission date: 2017-07-17

hardware involved. Providing support for existing de-facto standards such as DDS or UPC-UA as asset
layers, should this be required in the future, is possible within the LinkSmart platform.

The external interfaces of components in the COMPOSITION system will use RESTful HTTP interfaces for
request-response communication. For message-based communication, the MQTT and AMQP protocol will
be used.

The OGC SensorThings API Data Model will be used for system-generated information passed between
components.

 Deployment and System Management mechanism 4.4.2.2

The use of heterogenous platforms and frameworks as well as existing products from several development
stakeholders within the COMPOSITION system will result in different build chains and platforms to be used.
To provide both a consistent deployment and system management mechanism, all components will be made
available as pre-configured, container-based instances. As described in section 5.5.1, have chosen Docker
as the container implementation and will use Shipyard or Portainer as a management tool.

 Security mechanism 4.4.2.3

For authentication and authorization of both system components and users, Keycloak will be used. It will be
integrated into the message broker, thus allowing all components to use the security system in a uniform
manner. Blockchain functionality will also be integrated in the broker functionality, providing distributed trust
for any message sent through this mechanism. After evaluation and tests, Multichain has been selected as
the blockchain implementation in COMPOSITION. Transport Layer Security will be used as part of the
communication security protocols.

 Data persistence mechanism 4.4.2.4

Component-specific configuration data and caching is handled inside the components. Due to the bottom-up
design approach and that analysis and pattern detection is performed on data streams rather than static
data, a common data persistence mechanism for system-generated data has not been prioritized in the initial
work. However, there are components that will rely on querying structured data generated by the system and
the design choice for these is an OGC SensorThings API compliant data store. There are several
implementations available. This is discussed in section 5.4.2.

 Metadata mechanism 4.4.2.5

The Digital Factory Model (DFM) (COMPOSITION, 2016), described in section 5.4.1.2, is the system source
of information on classes and instances in the factory. It contains information on production lines, sensors,
the id of a sensor, what phenomenon it reports data for, format and unit of measurement.

Other parts of the system, such as the middleware, the message broker and the human computer interfaces,
will need this information when searching for or subscribing to messages containing data on specific objects
or types of objects. E.g., the intra-factory interoperability layer (section 0) will publish information coming
from a sensor. This may be published containing metadata in-band, e.g. containing information on the unit of
measurement or associated production line, or the metadata may be located out-of band. In the latter case,
components subscribing to data for a production line will have to first locate the relevant data sources using
the DFM and then subscribe to data based in the identifiers of these data sources.

Whether metadata should be communicated in- or out-of-band has not yet been decided. This has an impact
on the design of topic structures for the message broker and the information flow when components request
new types of information from the system. In the case of out-of-band metadata, bindings for the system
components could be set up at deployment time using a designated system configuration component.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 19 of 96 Submission date: 2017-07-17

5 Architectural views

5.1 Overview

The strategic objectives of COMPOSITION state two main deliverables of the project: a digital automation
framework to integrate data along the value chain inside the factory, and a largely automatic ecosystem to
interconnect different stakeholders in the supply chain.

COMPOSITION has two main goals: The first goal is to integrate data along the value chain inside a factory
into one integrated information management system (IIMS) combining physical world, simulation, planning
and forecasting data to enhance re-configurability, scalability and optimisation of resources and processes
inside the factory to optimise manufacturing and logistics processes.

The second goal is to create a (semi-)automatic ecosystem, which extends the local IIMS concept to a
holistic and collaborative system incorporating and interlinking both the supply and value chains. This should
be able to dynamically adapt to changing market requirements.

Figure 8. Composition conceptual architecture.

The digital automations framework combines the data sources in the factory value chain, data from the
production lines, ERP systems, forecasting, simulation and analytics data to form an integrated information
management system (the COMPOSITION IIMS). At the lowest level the Shop Floor Connectivity provides
access to devices, machines, equipment and sensors installed in the factory. The Industrial IoT Services
layer creates an Internet of Things environment and enables standardised communication, discovery, data
exchange and service innovation mechanisms.

The Industrial IoT Services feeds a number of business services with collected IoT and other production
data:

Material&Component Tracking

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 20 of 96 Submission date: 2017-07-17

A Realtime Location Tracker System keeps track of where products and other valuable components are on
the shop floor while an Asset Tracking Blockchain is used to log transfer and movements of components in
the manufacturing chain.

Product Quality Monitoring

The Compliance Monitor is responsible for checking that a product is manufactured and handled according
to relevant regulations. The Realtime Product Defect Detector uses advanced data fusion and big data
analytics to detect any deficiencies in a product.

Manufacturing Forecasting

The Machine Failure Predictor uses deep learning and advanced big data analytics to predict failures of
machine and needs of maintenance. The Price Forecaster uses trained artificial neural networks to forecast
the price of products and components. A Production Simulation and Forecasting Engine allows shop
managers to simulate effects of re-configuration of processes inside the factory to optimise manufacturing
and logistics processes.

Automated Procurement

One of the main innovations of Composition is the use of agent technologies to automate the procurement
and negotiation process. Autonomous Supplier or Requestor Agents that negotiate and reach agreements
with other stakeholders. A Matchmaker helps in find and matching best available offers with request.

Ecosystem Collaboration Framework

A virtual marketplace is envisioned where each party is represented by one or more semi-autonomous
agents. To enable the COMPOSITION ecosystem an infrastructure for an Agent Marketplace is developed to
support dynamic and automated connections between stakeholders in the supply chain, making
manufacturers, suppliers and logistics interoperable and optimizable. The Market Event Broker propagates
message between different actors in the marketplace. Trust is achieved by the use of an Audit Log
Blockchain to maintain an immutable ledger of agreements and transactions.

Meta Data and Storage

Finally, IoT Storage allows for logging and storing of historical data from the shop floor. The Digital Factory
Model is a high-level representation of the shop floor, stations, cells, productions lines and all the IoT
sensors. The Manufacturing Ontology contains semantics about the market place.

Cyber Security, Privacy and Trust Framework

The Security Framework managing Cyber Security, Privacy and Trust, is a cross-cutting concern spanning
the entire platform, providing end-to-end security by means of standard and widely used protocols for
identification and distributed trust (e.g. OpenID and the Bitcoin blockchain protocol).

5.2 Context View

The Context View describes the system boundaries and interactions with its environment: how the system is
connected to actors in the marketplace and other systems, e.g. existing factory infrastructure.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 21 of 96 Submission date: 2017-07-17

Figure 9. The COMPOSITION system context view.

The value chain IIMS interacts with the actors in the value chain and external systems in the factory, e.g.
Product Data Management (PDM), Manufacturing Execution System (MES) and Supervisory Control And
Data Acquisition (SCADA). Some analytics components in COMPOSITION use external data logs as input.
The COMPOSITION Marketplace Agent in the intermediary between the factory IIMS and the
COMPOSITION Marketplace. The agent uses information from external systems for Product Data
Management (PDM), Supply Chain Management (SCM), Logistics or Customer Relationship Management
(CRM) and/or data from COMPOSITION to initiate and guide the actions it takes in the Marketplace.

5.2.1 Concepts

The COMPOSITION virtual marketplace is envisioned as the “virtual” place where the “digital”
representatives (agents) of involved stakeholders meet, exchange information, transfer operations data and
negotiate to dynamically form supply chains. Such chains may either involve physical goods being
exchanged (i.e., supply materials) or immaterial assets such as services, consultancy, etc. Exchanges on the
marketplace typically happen at a relatively high frequency, can involve potentially high numbers of
stakeholders and do not require direct human intervention. Nevertheless, humans are part of the loop being
involved by their respective agents every time their judgment or approval is needed, e.g., to confirm a pre-
negotiated deal.

This autonomous, but supervised behaviour allows for increasing the flexibility and speed at which supply
chains are formed, executed and destroyed, with potentials to improve the current supply-level processes in
many domains within the Industry 4.0 landscape.

The overall logic architecture of a COMPOSITION marketplace is depicted in Figure 10, which mainly
highlights the relation between the IIMS on the stakeholders’ side and the respective agents on the
marketplace side. According to the original project specification (COMPOSITION, 2016), “every factory
involved in the COMPOSITION ecosystem is able to generate supply-chain formation primitives (supply
needs) described in a high-level, machine understandable format. Such requests are handed over to the
factory representatives in the COMPOSITION market place (the COMPOSITION Agents), triggering
autonomous exchange of information, and negotiation with peer agents. Such exchanges are regulated by
negotiation parameters, security and trust rules and by reputation mechanisms, thus ensuring a reliable, and
somewhat predictable dynamic formation of supply chains. Each representative agent processes, filters and
dynamically masks exchanged information (e.g., request for services / material) according to agent-specific
policies. Resulting information is then be matched against goals set-up at the single factory level (intra-
factory side), possibly mediated by a human user. Throughout the whole negotiation process, security, data
protection and obfuscation will be applied to ensure that exchanges between factory representative agents
are protected.”

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 22 of 96 Submission date: 2017-07-17

Figure 10. The logic architecture of a COMPOSITION marketplace.

Starting from the definition in (COMPOSITION, 2016), integrated with evidences resulting from the initial
requirements gathering process (D2.1), a more formal definition of marketplace has been identified, together
with some corollary information, better detailed in the following.

 Definitions 5.2.1.1

The COMPOSITION marketplace can be seen as a particular variation of a Multi-Agent System (MAS). MAS
have been widely investigated in research, and their application domains range from Distributed Constraints
Optimization (DCO) problems to coordination and delegation of computational tasks. While the adoption of
agent systems in automatic negotiation, i.e., for DCO problems, is not new, as witnessed by the huge
amount of literature available, application of such techniques in real-industrial environments, in a fully
decentralized set-up still presents some research challenge and offers possibilities for advancing the state of
the art. As part of the architecture specification process documented in this deliverable, activities on the
agent marketplace mainly lead to a fully de-centralized definition of MAS, including the de-materialization of
traditional agent containers into a much more light set of collaborating software (agents) sharing a common
communication infrastructure and common agency services (i.e., white and yellow pages).

According to the COMPOSITION approach, agent containers are defined as follows.

An agent container is a set of intelligent agents interacting through the same, shared broker (can be a
cluster) and referring to shared platform services such as the Directory Facilitator

7
 and the Agent

Management Service.”

Differently from approaches, in which the agent container is seen as a central runtime environment where all
the agents belonging to a certain system live, in COMPOSITION agents are designed to live at the
stakeholder premises (or in its IT infrastructure). This permits on one hand, to improve trustworthiness of
agents, and acceptance, as no real code access is possible for entities other than the agent owner itself. On
the other hand, it permits to remove typical constraints of traditional MAS systems, e.g., (a) the single point
of failure represented by the Agent Container, (b) the scalability issues, (c) the techniques for enabling
container-to-container communication, (d) the performance issues related to central deployment of
computationally intensive agents. Moreover, the fully distributed approach proposed in COMPOSITION,
reduces as much as possible the typical overhead of intercommunicating agent containers. Agency services

7
 In COMPOSITION a more advanced version of such an agent, namely the MatchMaker, operating based on ontology models is

adopted.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 23 of 96 Submission date: 2017-07-17

are in fact shared naturally among distributed agents, thus removing the typical issues of duplication among
containers and the related synchronization and/or delegation problems of activities needed for effectively
supporting agent search and/or directory services.

While being decentralized by design, the COMPOSITION marketplace definition is centred on a so-called
communication broker, which might be identified as single-point-of-failure for the architecture. However,
several studies, and results in literature, show that design solutions can be adopted, based on clustered
deployment, which can ensure high resilience to failures for these kind of broker-centric messaging
infrastructures (see Section 6.2).

In COMPOSITION, an agent-based marketplace is simply defined as an “agent container”.

Despite this simple, technical, definition, several variations of the marketplace concept are introduced
including the distinction between open and closed marketplaces as well as the introduction of temporary
association of agents, or “virtual marketplaces”.

COMPOSITION foresees the possibility to have more than one market place running at the same time,
serving different communities. However, according to the project specification (COMPOSITION, 2016), the
marketplace must support the discovery of stakeholders not part of established supply chains. Assuming that
in first instance a single market place corresponds to an extended supply chain, the concept of a so-called
"open marketplace" can be introduced.

A COMPOSITION Open Marketplace is “a COMPOSITION Marketplace open to any stakeholder having
valid COMPOSITION credentials”.

All players of the COMPOSITION ecosystem shall have a representative in the Open Marketplace. However,
some stakeholder might decide to invite other stakeholders to participate in a Closed Marketplace, e.g., to
protect/isolate certain supply chains. Such an invitation is managed through suitable agent interaction (i.e.,
messages) and/or through a dedicated marketplace portal. Closed Marketplaces are structurally equivalent
to open marketplaces. The main difference with respect to an open marketplace is that a closed marketplace
is a separated marketplace with its own infrastructure, e.g., AMS, DF and communication broker. Closed
Marketplaces typically run on the premises of the marketplace owner and are subject to additional join and/or
participation policies defined by the marketplace owner. The closed market place operations and exchanges
are "isolated" from the open marketplace. A closed marketplace is defined as follows.

“A COMPOSITION Closed Marketplace is a COMPOSITION Marketplace owned by one stakeholder and
typically offered to a trusted subset of other COMPOSITION stakeholders. The Closed Marketplace can be
public or private. The former will accept join requests by agents living in the Open Marketplace while the
latter will accept agents only by invitation. A Closed Marketplace is physically separated by the Open
Marketplace and has typically a separate infrastructure including the broker, AMS, DF, etc.”

In case collaboration within agents shall occur on a temporary basis, Virtual Marketplaces, are supported,
e.g., through grouping mechanisms similar to multicast communication. In particular,

“A Virtual Marketplace, or group, is a "multicast" group of agents interacting with each other in the context of
a negotiation. The group can be persistent over negotiations or can just be defined for a single negotiation
exchange. A Virtual Marketplace lives in, and exploits the infrastructure of an Open Marketplace.”

While these technical innovations are still subject of active research, and will certainly be refined during the
project lifespan, they already open new exploitation possibilities for the COMPOSITION marketplace
concept, and contribute to lower the technology acceptance level for industrial stakeholders.

More specifically:

 The Distributed Marketplace derives from strict interactions with the composition industrial partners
and provides means to ensure trust on the system, as the involved stakeholders retain full control on
their software representatives on the marketplace. Moreover, it opens possibilities for new
businesses in the supply chain, e.g., the marketplace infrastructure provider, which can be
independent from involved stakeholders and might require a fee for using provided services. Such
services include basic connectivity, agency services and the possibility for stakeholders to define
and run their own Closed Marketplaces.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 24 of 96 Submission date: 2017-07-17

 The Closed Marketplace allows the marketplace owner, typically the “central actor” of a supply chain,
to keep control on involved partners and to ensure a certain degree of reliability of actors involved in
the chain(s). This concept provides a tuneable tool to trade-off the need of marketplaces open to
possibly new stakeholders (Open Marketplace) and the contrasting need of having trusted, certified
suppliers able to guarantee proven quality in provided materials / services. This ability to tune the
“openness” of a certain marketplace is a relevant factor for effective adoption of COMPOSITION,
possibly opening access to very controlled supply chains, e.g., those subject to strict certification
processes.

 While being central to the marketplace, supply chain formation and related activities (e.g., post-sell
services) are not the only focus of the marketplace. Active advertisement and support to service /
stakeholder search is a valuable asset, as witnessed by explicit requirements set by the project SME
providing added value services, e.g., consultancy, integration and customization. The inclusion of
such needs in the initial design of the COMPOSITION marketplace shall increase the overall
exploitability of the project outcome, by widening the possible stakeholder base.

5.3 Functional View

5.3.1 High-level functional view

The above diagram describes the COMPOSITION system from business architecture functional view.
Generic functional components like Complex Event Processing (CEP) and Deep Learning ANNs (Artificial
Neural Networks) are used to implement business specific functionality, e.g. machine failure prediction.

Figure 11. High-level functional view of COMPOSITION architecture.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 25 of 96 Submission date: 2017-07-17

The above diagram provides a high-level view of the components and their interactions. Detailed diagrams
are available in the sections for the respective component. Components which have been identified at a late
stage in the process do not yet have detailed descriptions, e.g. the various HMI components such as Visual
Analytics.

The design decision has been taken to use broker-based communication, with adapters for request-
response based communication in both the IIMS and the Marketplace. This makes it possible to secure
communication using the broker and having this as the policy enforcement point for communication between
components. It also allows for logical addressing of the components through the broker. As mentioned
above, AMQP has been selected as the primary protocol to use. In the above diagram, the communication
mechanism is regarded as infrastructure and is thus not modelled.

 RAMI 4.0 5.3.1.1

A mapping of the initial COMPOSITION system components to RAMI 4.0 Layers can be seen in Figure 12.
This diagram is expected to evolve further over the duration of the project.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 26 of 96 Submission date: 2017-07-17

Figure 12. A mapping of COMPOSITION functional packages to the RAMI 4.0 Layers.

The COMPOSITION system scope and pilots cover the intra-factory functionality from "Field Device" to
"Work Center" via the IIMS and has a special emphasis on the inter-factory ecosystem of the "Connected
World", provided by the interoperable agent-based marketplace and the blockchain-based log-oriented
architecture, providing secure and trusted exchange of supply chain data between independent parties.

Life cycles of both types and instances of products and machines is covered by COMPOSITION, where
complex pattern detection, deep learning networks and simulation capabilities may be used both for
operational management and continuous improvement of factory equipment and products.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 27 of 96 Submission date: 2017-07-17

The administrative shell can be implemented at various levels in the COMPOSITION system. The different
possible implementation mechanisms of the Intrafactory Interoperability Layer create administrative shells for
the connected assets (see section 5.3.3.2). More complex administrative shells for production lines are
implemented inside the IIMS using other components such as the Big Data Analytics, Decision Support
System or Simulation and Forecasting Tool. The I4.0 components will be layered on top of each other and
more than one administrative shells may exist for the same asset or combination of assets. Further work will
be performed to align the configuration of a COMPOSITION system instance with the concept of I4.0
components.

5.3.2 Market Event Broker and Real-time Multi-Protocol Event Broker

In COMPOSITION, there is a need to support the most common IoT Messaging Protocols to integrate data
from multiple sources in the intra factory and support flexible component integration. There is also a need to
be able to secure the messaging using the services provided by the COMPOSITION security framework.
Furthermore, as an intermediary, decoupling system components, the Message Broker also provides the
means to manage scalability in a consistent manner.

The COMPOSITION Message Broker will be the communication mechanism in both in the intra factory and
in the COMPOSITION market place. Note that this will be two completely different instances but they will
provide the same basic mechanism of communication and they are configured individually, i.e. the
components will be the same but they will be used differently.
The Advanced Message Queuing Protocol (AMQP) is an application layer protocol for message-oriented
middleware, provided as an open standard. AMQP is highly configurable and can emulate other protocols,
e.g. MQTT.
The implementation mechanism chosen for the COMPOSITION Real Time Multi-Protocol Event Broker is
based on RabbitMQ

8
, an open source component supplied under the Mozilla Public License. RabbitMQ is an

open source message broker that is in wide use
9
 and has an extensible architecture. It implements the

AMQP 0-9-1 protocol
10

 and through adapters supports the most common messaging protocols, e.g. MQTT,
STOMP and XMPP. Extensions and adapters can be written to support other messaging patterns, protocols
and security management solutions.

The main messaging scenarios that the Real Time Multi-Protocol Event Broker will support are the following:

 Simple queueing: Where messages are queued between producer and consumer, see fig below, acting

as a buffer.

Queue

Producer Consumer

Figure 13. Simple queuing.

 Publish/Subscribe: A common pattern for message based architectures where a producer publishes

messages typically with a topic pattern and consumers subscribe to different patterns.

8
 https://www.rabbitmq.com/

9
 At the time of writing 35.000 production deployments , https://www.rabbitmq.com/

10
 http://www.amqp.org/sites/amqp.org/files/amqp0-9-1.zip

https://www.rabbitmq.com/

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 28 of 96 Submission date: 2017-07-17

Queue1

Producer

Consumer1

Exchange

Queue2

Consumer2

Figure 14. Publish-subscribe.

 RPC (Remote Procedure Calls): Where the message broker is used as an exchange and queue for

procedure calls. This is useful both for ensuring security as well providing mechanism to manage

scalability.

RPC
Queue

Client
Server

Figure 15. Remote Procedure Call.

To provide an integrated security solution for COMPOSITION, an adapter allowing the authentication and
authorization mechanisms of RabbitMQ to be managed by Keycloak is being developed. The same security
system can thus be used for intra-factory business user identity, marketplace partners and system
components. An adapter for the blockchain distributed trust mechanism will be built to allow the integrity and
non-repudiation of broker messages. This is described in section 5.3.11 and section 6.1.

When the broker is used for inter-component communication, logical addressing of components can be used
– a component identifier instead of a network address and port – decoupling components and providing a
consistent way to address and find them for other components. As mentioned above, authentication and
authorization can also be managed in a uniform manner via the broker. As extensibility is a concern for the
developer stakeholders, it is desirable to use the broker for all component communication. De-coupled,
message-based communication suits the data-centric nature of the COMPOSITION system well, where
several components independently subscribe to the same information. However, some exchanges are more
suited for request-response interaction, e.g. REST APIs used for querying or administration. These will be
using an adapter in RabbitMQ to provide transparent request-response messaging.

The overhead and queue limitations may be a problem with the described design if there are requirements
for large response payloads or sub-second response time for these interfaces. However, the current
requirements are not expected to have an impact on this design. The centralized approach to communication
also introduces a possible bottleneck in the system. Load-balanced clusters of RabbitMQ servers is a tried
configuration to deal with scalability of the broker which is expected to be applicable in COMPOSITION.
RabbitMQ is also available as highly scalable cloud services

11
.

11

 https://www.cloudamqp.com/

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 29 of 96 Submission date: 2017-07-17

5.3.3 Intra-factory Interoperability Layer

Figure 16. Intra-factory interoperability layer components and dependencies.

The intra-factory interoperability layer has two main goals: the first one is to provide a model for
interconnecting the Composition ecosystem in the intra-factory scenario, the second one is to ensure the
conformity between communications among interconnected components. The involved technology provided
by development partners of Composition and the connectors that will be defined, developed and deployed to
integrate these.

Individual partners’ responsibilities and work package outputs, are highlighted in the followings:

 Sensors, Sensors Buffering and Sensors Gateways will be developed and adopted from existing
technology. Consideration will be taken to Technical Objective 1.1 (see section 4.4).

 The BMS is provided by a project development stakeholder (NEXTWORKS) and is the translation
layer providing shop floor connectivity from sensors to the COMPOSITION system. Raw data
storage will be added for offline debug purposes.

 The middleware is the main recipient in which the interoperability single components act

o LinkSmart is a well-known middleware solution per se and will be customized to satisfy
Composition requirements. Components include

 Resource catalogue, works as resources index

 Service catalogue, works as service index

 Event Aggregator, parse messages to ensure well-formed and conformity in data
streams

o Keycloak is a virtual layer that ensures authorization and authentication. Like all security
related measures, it will be deployed by the Security Framework.

o The broker-based intra-factory communication system manages all internal communication
in COMPOSITION.

 The Big Data Analytics provides Complex Event Processing (CEP) capabilities for the data provided
by the intra-factory integration layer

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 30 of 96 Submission date: 2017-07-17

 The Hidden Storage is a storage not accessible from the outside in which aggregated data are
stored for debug purposes, i.e. re-bootstrapping already trained artificial neural networks belonging
to the Deep Learning Toolkit and to the Dynamic Reasoning Engine.

 The Deep Learning toolkit component for this intra-factory scenario and an example is described in
section 5.3.5.

 The Visual Analytics component is the reporting interface of the Decision Support System and
Simulation and Forecasting Toolkit.

 The Dynamic Reasoning Engine is part of the Simulation and Forecasting Toolkit.

 The Decision Support System uses process models to guide the production process.

Although the Human Machine Interfaces are missing in the big picture because these are still under
definition, they will be most certainly be connected to this intra-factory diagram.

In order to better specify the scenario above it is worth mentioning that the main differences between the
Deep Learning Toolkit and Dynamic Reasoning Engine have been highlighted during the architecture
definition workshops. The former acts as a continuous learning toolkit for providing predictions on both
historical and live data streams from the shop floor level based on Artificial Neural Networks models and
supervised learning techniques. The latter provides simulations to needed components, such as the Decision
Support System, based on both live and virtual data in a bidirectional manner, simulating possible criticalities
adding hypothetical data perturbation to live streams.

LinkSmart was originally developed within the Hydra co-founded EU project for Networked Embedded
Systems. It is an enabler allowing heterogeneous physical devices to be incorporated into their applications
through easy-to-use web services for controlling any device. Despite at M9 being almost certain that the a
reduced set of LinkSmart functionalities will be adopted it is still under discussion if the Global and Local
connectors belonging to the LinkSmart architecture will be stripped down, leaving in the Inter-factory
Interoperability Layer an agile tool for improving the versatility of the broker-based communication system
infrastructure. The design iterations in the project will produce a LinkSmart configuration that suits the
Composition ecosystem.

Finally, it is worth mentioning that the intra-factory interoperability layer is already scouting technologies in
order to leverage as much as possible on precious outputs from previous EU co-founded projects. Therefore,
the FI-WARE architecture components are investigated as possible relevant Generic Enablers interfaces
might be adopted. Moreover, the LinkSmart middleware has been mentioned above and while its inclusion in
the intra-factory layer is almost certain, there are unresolved design issues on which version and which
subcomponents will complement better the brokering base system that will be deployed at the shop floor
level for the intra-factory interoperability layer.

More details will be provided in D5.9 “Intrafactory interoperability layer I” due at M18 and will be reflected in
this document in its next iteration.

 Iot Hub 5.3.3.1

The IoT Hub provides an infrastructure to support continuous data collection from IoT based resources and
normally is installed at companies’ premises level. Its mission is to gather the data from the shop floor IoT
devices and provide it to any Data Collector Platform or Framework in this case to the Composition IIMS.

The IoT Hub is a framework built based mainly on FIWARE Generic Enablers capable to collect information
from IoT devices and distribute them through a NGSI

12
 broker. FIWARE exposes to developers Data Context

elements or entities (JSON objects) with attributes and metadata with a uniform REST API, which allows the
IoT Hub to be an open source software stack aiming to bring Data-level interoperability to the complexity of
Iot standards and protocols existing today. The IoT Hub is able to expose all IoT devices information and
commands using the Data Context API (NGSI) for communicating devices with NGSI brokers or any other
piece which uses the NGSI protocol (Next Generation Service Interface) NGSI9/10, which is now being
adopted widely in multiple domains, including manufacturing. Focusing on smart factories, the IoT Hub is
dedicated for the collection of data from the shop floor acting as a middleware between the IoT data
producers in the shop floor and the data consumers, which can be external services or applications through
a NGSI broker or any other kind of broker.

12

 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-10_Open_RESTful_API_Specification

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 31 of 96 Submission date: 2017-07-17

The following picture shows the component architecture of the IoT Hub:

Figure 17. IoT Hub component architecture.

The components are:

 MQTT broker: The selected implementation of the MQTT Broker for the IoT Hub was Mosquitto,
although it could be substituted by any other standard MQTT broker.

 FIWARE Backend Device Management GE – IDAS. This component facilitate the communication by
connecting IoT devices to FIWARE-based ecosystems, as long as its IoT Agents translate IoT-
specific protocols into Next Generation Service Interface (NGSI) context entities that are the
FIWARE standard data exchange model. Therefore, the MQTT-JSON IoT Agent acts as a gateway
for communicating devices using the MQTT protocol with NGSI brokers (or any other piece which
uses the NGSI protocol). The communication is based on a series of unidirectional MQTT topics
(i.e.: each topic is used to publish device information or to subscribe to entity updates, but not both).

 FIWARE IoT Data Edge Consolidation GE - Cepheus. It resides inside the IoT Hub to provide Data
Handling functionalities and introduced to address the need to process data in real time by
implementing features like filtering, aggregating and merging real-time sensor events thanks to the
use of smart, but simple, rules described in a SQL-like language. Those rules are completely
dynamic and as such they can be updated or deleted on-the-fly using its API. Once data handling
techniques are applied, subscribers will be able to collect added-value and relevant data, thus
externalizing the responsibility for dedicated development of asynchronous data analysis.

Therefore, the IoT hub will act as an IoT data collector complementary to the LinkSmart and the NXT BMS
architecture, and at the same time as a connector for FIWARE compliant platforms, offering interoperability
mechanisms between different IoT platforms, enabling the exchange of data from the IIMS with future
developments intra/extra factory based on FIWARE components.

 Building Management System 5.3.3.2

The Intra-factory Interoperability Layer (IIL) component is part of the Integrated Information Management
System (IIMS) of COMPOSITION. The main purpose of this layer is allowing a seamless, homogeneous
interconnection among all the cyber-physical systems in the factory and the software modules in the upper
layer (data processing, decision support, etc.). The IIL has been designed considering the general principles
set in the RAMI 4.0 specification, and is split into two logical sub-layers, highlighted in yellow and green in
the picture below.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 32 of 96 Submission date: 2017-07-17

Figure 18. Components and interactions of the BMS: LinkSmart middleware, Configuration Shell, BMS (Building
Management System), RAMI Administration Shell.

The lower part (yellow in picture above) is built on top of the existing BMS software modules provided by
NXW, which guarantee low level interoperability with a number of different field buses (this is positioned at
the Asset / Integration RAMI layers). Such modules gather data read from the sensors installed in the local
environment, interconnected through different field buses (e.g. KNX, Modbus, BACnet), and organize it into a
uniform Data Model. This model provides a representation of sensor and actuator data which is independent
of the physical type of underlying devices (Information/Communication RAMI layers).

The BMS HAL and COMPOSITION Object Mapper expose a virtualized version of the underlying physical
objects from which information can be read and actuations can be performed, thus providing the equivalent
of an Administration Shell in the RAMI architecture.

The upper part (green the picture above) is made of components belonging to the LinkSmart architecture,
and provides both real-time and historical data connectors for the other IIMS components. Communication
between LinkSmart and the BMS components will be done through standard LinkSmart interfaces,
implemented into the BMS Agent Process.

5.3.4 Big Data Analytics

Manufacturing in assembly lines consist in a set of hundreds, thousands or millions of small discrete steps
aligned in a production process. Automatized production processes or production lines, they produce for
each of those steps small bits of data in form of events. The events possess valuable information, but this
information loses the value through time. Additionally, the data in the events usually are meaningless if they
are not contextualized, either by other events, sensor data or process context. To extract most value of the
data, it must be process as it’s produced. In other words, in real-time and on demand. Therefore, we prose
for the Big Data Analysis; the usage of Complex-Event Processing for the data management coming from
the production facilities. In this manner, the data is processed at the moment when it is produced extracting
the maximum value, reducing latency, providing reactivity, giving it context, and avoiding the need of
archiving unnecessary data.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 33 of 96 Submission date: 2017-07-17

The Complex-Event Processing service is provided by the LinkSmart® Learning Service (LS). The LS is a
Stream Mining service that provide means to manage real-time data for several propose. In the first place,
the LS provide a set of tools for collect, annotate, filter, aggregate, or cache the real-time data incoming from
the production facilities. This set of tools facilitate the possibility to build applications on top of real-time data.
Secondly, the LS provide a set of APIs to manga the real-time data lifecycle for continuous learning. Thirdly,
the LS can process the live data to provide complex analysis creating real-time results for alerting or
informing about important conditions in the factory, that may be not be seeing at first glance. Finally, the LS
allows the possibility to adapt to the productions needs during the production process. The diagram below,
the use cases that the LS enable are presented.

Figure 19. LinkSmart® Learning Service Architecture Sketch.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 34 of 96 Submission date: 2017-07-17

Figure 20. LinkSmart® Learning Service Enabling Use Cases.

It’s worth mentioning that the LS do not learn from the data, it just facilitates the data to the models. In other
words, the LS connects externally to the models for the learning process. By this the LS enables the online
real-time learning process and data deliverable for training the model. In COMPOSITION, the external
learning models will be provided by Deep Learning Toolkit. Nevertheless, the LS is capable do on the run
analytics using less historical data intensive algorithms such as Random Forest, Gradient Boosting, Kalman
Filters, Particle Filter, Hidden Markov Models, boosted Artificial Neural Networks. With them it may be
possible to predict certain phenomenon without the need of historical data.

The LS has been developed and tested in different EU projects such as ALMANAC
13

 and IMPReSS
14

.
However, the use cases where in the scope of Smart Cities or Smart Buildings, and it must be tailored for
more Industry 4.0 oriented use cases where the events are driven by a controlled and data intensive
production process.

5.3.5 Deep Learning Toolkit

 Introduction 5.3.5.1

The Deep Learning Toolkit delivers prediction and forecasting of relevant indicators based on machine
learning models. It is a component of the Composition ecosystem and belongs to both the intra and inter-
factory scenario. In the former it is in charge of analysing the shop floor parameters feed to the component
by the IIMS and the BMS (section 5.3.3.2) through the middleware belonging to the Intra-factory
Interoperability Layer, mediated by the pre-processing of the Big Data Analytics tool. Then, a continuous
learning process produces predictions based on the analysed data, addressing use cases mainly related to
predictive maintenance, and feeds these data to all components connected to the Intra-factory
Interoperability Layer, especially the Decision and Support System.

The Deep Learning Toolkit component has a lifecycle of mainly four phases:

13

 http://cordis.europa.eu/project/rcn/109709_en.html
14

 http://cordis.europa.eu/project/rcn/185510_en.html

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 35 of 96 Submission date: 2017-07-17

 Offline training phase

 Validation phase

 Testing phase

 Continuous learning phase

The offline training phase, as it’s named after, starts with an offline analysis of the historical data and takes
place outside the shop-floor.

The validation phase takes also place offline and it’s the phase in which the parameters of the Artificial
Neural Network are adjusted in order to reach the threshold set for an acceptable accuracy level.

The training phase is also consequent to the validation and it’s the phase where the component and the
Artificial Neural Network has consumed all historical data for having a robust algorithm ready to be deployed.

The continuous learning phase is the longest of the four phases and takes place at the shop-floor level, at
the premises of end-user that has provided the shop floor data. In this phase, the component is online and
connected to the Composition ecosystem, where it learns from data batched coming from the shop-floor in
near real-time.

 Interfaces, Interactions and used standards 5.3.5.2

The Continuous Deep Learning Toolkit module receives raw and pre-processed input data from the
middleware (Adaptation Layer for Intra-factory Interoperability) and from the Big Data Analysis module
respectively. The latter module also provides the Continuous Deep Learning Toolkit with rewarding signals to
foster internal continuous retraining.

The Continuous Deep Learning Toolkit module publishes to the middleware reports and statistics about its
estimated accuracy in addition to the predicted targets based on live data streams. It is worth noting that the
middleware is not the final destination of this flow of predictions, but it only broadcast it: various IIMS
modules may leverage these data. These two operations are asynchronous and independent one from
another. Typically, new targets will be published as soon as new data are processed, while the retraining
resulting in updated accuracy report can take place at lower frequency.

The stack diagram in Figure 21 depicts the most relevant interactions of the two aforementioned modules
with the middleware.

Figure 21. Deep Learning Toolkit interactions.

The Continuous Deep Learning Toolkit module will perform read and write operations to the middleware its
message protocol which is likely to be MQTT based. Apart from this, the API provided to other modules to
access and to provide data will be based on REST services. In both cases, the message payload will adopt
common formats such as XML and JSON. Data will be formatted conforming to the commonly agreed
schemas (for example, defined in XSD format or JSON Schema).

 Sequence diagrams 5.3.5.3

The activity diagram in Figure 22 describes the offline model training based on historical data. The process is
as follow:

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 36 of 96 Submission date: 2017-07-17

The Continuous Deep Learning Toolkit requests historical data set to the appropriate data sources including
Big Data Analysis module. The latter request, receive and pre-process the historical data set on its own and
then send the output analytics to the Continuous Deep Learning Toolkit.

When the Continuous Deep Learning Toolkit receives both raw historical data and the pre-processed
analytics merge them into the final dataset that is used for the training activity: this operation includes the
data shuffling and splitting the dataset into three partitions dedicated to training validation and test. The most
appropriate model is chosen for the prediction task to be accomplished.

Then, iteratively, multiple combinations of hyper-parameters, determining the model complexity and
expressivity, are taken into account. For each combination, a model is trained over the training set in order to
minimize the global prediction error and validated against the validation set.

The trained model performing at best on the validation set is retained and finally assessed against the test
set, resulting in an accuracy report that marks the end of offline training and that is published on the
middleware.

Figure 22. Offline training sequence diagram.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 37 of 96 Submission date: 2017-07-17

The activity diagram in Figure 23 describes the activities the Continuous Deep Learning Toolkit executes in a
production environment. The module stays idle waiting for incoming data from potentially heterogeneous (but
known) sources either internal – including the Agent module, the Big Data Analytics module – or external. As
soon as data are available the module uses its internal module to elaborate predictions which are made
available to other modules both over the middleware and with REST APIs.

An example of the latter modality is shown in the second action where the Agent module requests to the
Continuous Deep Learning Toolkit through the proper API a profiling report of other agents/or opportunities
and the Continuous Deep Learning Toolkit replies with the most recent forecasting report available.

The third activity shows a very similar process where other modules of the IIMS requests forecasted
indicators and stats and receives the most recent estimates.

Figure 23. Online forecasting sequence diagram.

5.3.6 Decision Support System

The Decision Support System (DSS) component is part of the Integrated Information Management System.
The IIMS is also part of the high-level platform of COMPOSITION. The main aim of the DSS will be to make
a step forward towards a better understanding of the involved manufacturing processes and operations, the
contribution of individual links of the supply chain, the effect of process monitoring in productivity, to facilitate

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 38 of 96 Submission date: 2017-07-17

communication and knowledge sharing among departments with different roles and responsibilities, the
maintenance requirements and procedures and the detection of daily production details and flaws

The Components/Functional Packages of the DSS are shown in the figure below.

Figure 24. Design and dependencies of the Decision Support System (DSS): LinkSmart middleware, DataBase,
Digital Factory Model (DFM), Simulation and Forecasting Tool, DeepLearning Toolkit, Visual Analytics (VA).

The main inputs, outputs and functionalities follow, in order to help gain a better understanding of how this
component will operate.

Main input(s) required for the DSS are:

 LinkSmart middleware (as data input)

 Deep Learning Toolkit (as a service provided)

 Simulation And Forecasting Tool (as a service provided)

 Digital Factory Model (DFM) (as a schema for internal data)

Main output(s) that the DSS gives out:

 LinkSmart (Key Performance Indicator alerts, etc)

 Visual Analytics (VA) (integrated view)

Main functionalities (high level):

 Proposes Actions based on scenarios

 Visualizes overall system behavior

 Optimizes procedures for proposed targets (restrictions)

Main functionalities of DSS toolkit are:

 Proposes Actions based on scenarios by using Combination of information provided by the
Business Process Diagrams (BPB) and the Digital Factory Model (DFM) based on the produced
semantic models, coming from all the involved stakeholders.

 Visualize overall system behavior and understanding between the involved manufacturing

processes and operations by individual links in the supply chain, as well as the effect of process

monitoring in productivity and facilitation of communication and knowledge sharing between

departments with different roles and responsibilities and finally the maintenance requirements and

procedures and the detection of the daily work flow helps business people to find optimal solutions

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 39 of 96 Submission date: 2017-07-17

among multiple alternatives subject to different business constraints and for proposed targeted

scenarios (restrictions).

It was necessary to orchestrate different components within the DSS, which would interact with each other in
a specific manner, so as to achieve the described functionalities and to guarantee a smooth implementation.

The main components of DSS are:

 Decision Model and Notation (DMN)
15

 Modeling: This toolkit provides models for the decision

support. Its main target is to represent the processes suitable for the decision support engine.

 The scenario analyser: It uses the simulation and forecast engine to analyses scenarios, and with

the modelling restrictions to provide the optimum processes.

 KPI Toolkit: It analyses the behaviour of the system and uses the Deep Learning Toolkit to provide

an overall image for the system.

 Visualisation: This is a set of various components for the visualization of the results of the whole

decision support system.

 Adapter: Provides a managed environment for the DSS. Translate data from various format, add

watcher for several events. Provides a common command interface for the system.

In order to facilitate interactions within the different DSS components and the COMPOSITION Ecosystem, an
API has been made available.

DSS API Description

KPI API The API exposes the KPI’s as a service. The API exposed as a
RESTful web service.

Core API Main API of DSS for rules, models, events

The following diagrams display a typical execution from an event received via middleware. The DSS reads
the data from DFM, uses the Deep Learning Toolkit as a service and visualise the result. Also provides the
results back to ecosystem.

15

 http://www.omg.org/spec/DMN/

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 40 of 96 Submission date: 2017-07-17

Figure 25. Typical protocol execution.

5.3.7 Simulation and Forecasting

Figure 26. The Simulation and Forecasting Tool and dependencies: LinkSmart middleware, DataBase, Digital

Factory Model (DFM), Decision Support System (DSS) and Visual Analytics (VA).

The Simulation and Forecasting Tool component is part of the high-level platform of COMPOSITION, the
Integrated Information Management System (IIMS), and its main purpose is to simulate processes models
and to provide forecast of events whose actuals outcomes have not yet been observed. This component will
provide a constantly updated sensing layer regarding the integration of different sensors so as to support a
Dynamic Reasoning Engine (DRE) and alarming services in production and logistics.
The main inputs of Simulation and Forecasting engine component are real time data coming from Linksmart
middleware, historical data coming from COMPOSITION Database and models of processes from Digital
Factory Model (DFM).

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 41 of 96 Submission date: 2017-07-17

Main input(s):

 LinkSmart middleware

 DataBase

 Digital Factory Model (DFM)

Main output(s):

 Decision Support System (DSS)

 Visual Analytics (VA)

Main functionalities:

 Simulation of process or logistic models

 Forecast future outcomes based on models

Simulation and Forecasting Tool component is divided in to sub-components: Simulation and Forecasting.
Simulation sub-component will simulate models (provided by DFM component) on historical data (provided
by COMPOSITION Database) or real-time data (provided by COMPOSITION LinkSmart middleware) so as
to provide results on several process or logistic scenarios, according to projects’ use case. The initial internal
parameters of a simulation scenario will be defined be the user, accordingly. The simulation results will be
fed into the COMPOSITION Decision Support System (DSS), where by an internal procedure there will be a
decision(s) for more scenarios to be simulated or not, regarding the tested process. Possible models that at
first fit to a process and subsequently simulated could be several approaches of regression, such as linear,
ridge, lasso, and elastic net regression.
Forecasting sub-component will provide predictions of future events for the selected process model, based
on the model parameters decided by the COMPOSITION Decision Support System (DSS) for the specific
process when the iterations of simulation process end. The forecasting scenarios will be the presented in the
most compelling way with advanced and innovative data visualization techniques utilizing an interactive
human-machine interface.

5.3.8 Matchmaker

COMPOSITION Matchmaker is designed to be the core component of COMPOSITION Broker. It supports
both syntactic and semantic matching in terms of manufacturing capabilities, in order to find the best
possible supplier to fulfill a request for a service, raw materials or products involved in the supply chain.
Different decision criteria for supplier selection according to several qualitative and quantitative factors will be
considered by Matchmaker.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 42 of 96 Submission date: 2017-07-17

Figure 27. COMPOSITION Matchmaker component diagram.

Main Input(s):

 Agents (Matchmaker gets agents’ requests as input)

Main Output(s):

 Agents (Matchmaker response to agents’ requests)

The Matchmaker architecture is depicted in the figure above. As it can be observed, two main components
are included: the Rule-Base Matchmaker and the Manufacturing Ontology Store.

The Rule-Base Matchmaker is developed in Java language and it is offered through RESTful web services.
The Rule-Base Matchmaker will be used by Marketplace’s agents in order to match requests and offers
between the agents. Its core component is the Matchmaking Module which consists of the following
functions:

 Agent Matchmaking Module: This module interacts with agents. An agent sends a request for a
service to the Agent Matchmaking Module which applies a set of rules in collaborative manufacturing
service ontology. Then the matchmaker module sends a response to the agent with a list contains
the agents who support a matching offer for this request.

 Offer Matchmaking Module: This module interacts only with default agents (‘thin’ agents) who cannot
evaluate offers by themselves (as the ‘advanced’ agents do) but they use the matchmaker
exclusively. An agent sends a request for a service to the Offer Matchmaking Module which applies
a set of rules in collaborative manufacturing service ontology. The set of rules considers several
qualitative and quantitative factors to match the agent’s request with the best available offer and it is
not limited to match the agent with all the other agents that can support his request as the Agent
Matchmaking Module does. So, the response of the Offer Matchmaking Module is the best available
offer.

The Semantic Rules component is a sub-component of Rule-base Matchmaker which contains all the files
with rules. These rules will be applied by Matchmaking Module to collaborative manufacturing service
ontology in order to extract the requested matching. The rules are in Jena format.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 43 of 96 Submission date: 2017-07-17

The Manufacturing Ontology Store is the knowledge base for the COMPOSITION Marketplace. Actually, it is
a collaborative manufacturing services ontology which supports flexible specification and execution of
manufacturing collaboration schemes. It is described in detail in the section of Marketplace Ontology.

Table 2. Matchmaker Main APIs.

Matchmaker APIs Description

Matchmaking Agent API The API receives as input an agent’s request and sends back to
the agent the Matchmaker’s output which contains a list with the
matching agents and their offers for this request. Input and output
are in JSON format. The API exposed as a RESTful web service.

Matchmaking Offer API The API receives as input an agent’s request with a list contains
the available offers which fulfil this request and sends back to the
agent the Matchmaker’s output which contains the best matching
offer. Input and output are in JSON format. The API exposed as a
RESTful web service.

Ontology Query API This API receives as input an agent’s command (e.g. import/export
data) and response back to the agent with the expected
command’s output. Inputs and outputs are in a predefined common
format (e.g. JSON). The API applies the command as a SPARQL
query (e.g. Insert/Select commands) into the Manufacturing
Ontology Store. This interface is defined by the REST protocol.

5.3.9 Marketplace

The COMPOSITION marketplace is composed of four main building blocks: The Agents, the Management
Portal and Services, the Communication Infrastructure (namely the Marketplace Event Broker) and the
Security Services (see Figure 28).

Figure 28. Marketplace components.

Agents may implement market-specific services, such as the white pages agent or the matchmaker, or they
can act on behalf of industry stakeholders participating in the marketplace. Required communication
infrastructure is provided by a suitable message broker (namely the Marketplace Event Broker), which

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 44 of 96 Submission date: 2017-07-17

provides message delivery services to all other components through a well-known, publish-subscribe,
interaction paradigm.
The set of components formed by the Marketplace Portal and the Marketplace Management Services has
been designed to offer suitable means to administer marketplaces, register new market stakeholders,
provide access credentials and connection parameters for agents to be deployed on the COMPOSITION
market, and the like. This design choice allows stakeholders to easily manage the entire marketplace
infrastructure, e.g., for defining new Closed Marketplaces.
Transactions and interactions between components in the platform are subject to a certain number of
security checks and procedures aimed at ensuring a high degree of trust and reliability of exchanged
information. These involve, among the others (better explained in 5.3.10), restricted access to the
marketplace communication infrastructure, channel encryption, provenance assessment techniques for
messages, audit logs on message trails, etc. To support marketplace components in achieving such a
trusted and secure operation, a dedicated set of components is purposely part of the marketplace design:
the so-called Marketplace Security Services (described in Section 5.3.11).

 Agents 5.3.9.1

Agents are primary actors of the COMPOSITION marketplace. They typically instantiate the supply-chain
formation strategy of industry stakeholders and are therefore crucial for the success of the project inter-
factory solutions. Although in the long term many different agent types are expected to coexist in the same
marketplace, 2 main categories of agents can be defined a priori, depending on the kind of provided
services:

 Marketplace agents

 Stakeholder agents

The former category groups all the agents providing services that are crucial for the marketplace to operate.
The latter category, instead, groups agents developed and deployed by the marketplace stakeholders to
take part in chain formation rounds.

5.3.9.1.1 Marketplace agents

The minimum set of marketplace agents required in COMPOSITION is composed by a single instance: the
White Pages agent or AMS (Agent Management Service). This agent has the responsibility of tracing all the
agents operating on the marketplace, providing information about their status as well as some very basic
search capability. In order to avoid re-inventing the wheel, COMPOSITION adopts the Foundation for
Intelligent Physical Agents (FIPA) definition of AMS and the corresponding set of offered services,
summarized in Table 3.

Table 3. AMS services.

Service Description

register Allows registering an agent as
"active" on the marketplace.

deregister Removes an agent from the list of
agents currently active on the
market

modify Modifies the registration information
about a certain agent

search Allows searching for active agents,
given a set of search constraints

Every agent in the marketplace shall register and update its status on the AMS prior to any operation. This
allows, for example, monitoring the overall status of the market as well as computing some metrics on the
global system performances. Moreover, AMS registration avoids involvement of non-active agents in
exchanges, thus simplifying the interaction management logic at the agent side.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 45 of 96 Submission date: 2017-07-17

Part of the AMS functions can be overridden by services provided by additional marketplace agents, e.g.,
the Directory Facilitator (or the Matchmaker) in COMPOSITION. This typically holds for search functions, as
AMS-level implementations are seldom sufficient for effective search and match of agent services,
especially when the required matching grammars are complex or when the number of agents in the
marketplace is particularly high.

Due to its crucial role in the marketplace operation, the white pages agent is a critical point of failure in the
market infrastructure. The related issues in case of breakdowns are therefore specifically addressed from
the very first design phases. In particular, 2 main approaches are deployed to address possible failures of
the AMS:

1. Sufficient redundancy is provided, defining mechanisms for take-over and hot-swapping of similar
agents in case of failures

2. An initial design of AMS-less operation based on broadcast inquiry messages is under definition,
which will permit to overcome single-point-of-failure issues at the cost of increased traffic on the
marketplace communication infrastructure.

In the COMPOSITION marketplace design, advanced agent search and other complex matching
functionalities are delegated to a special purpose agent, playing a superset of the roles of Directory
Facilitator and Agent Broker (in FIPA jargon). Due to the inherent complexity of such an agent, a full
subsection is devoted to its description: Section 5.3.8.

5.3.9.1.2 Stakeholder Agents

Stakeholder agents design is in principle out of scope for this architecture definition. In fact, every
stakeholder may implement (or require a third party to implement) its own agent, following its own policies
and assumptions. The only constraint set by the COMPOSITION marketplace on stakeholders’ agent design
is the ability to exchange messages using the Composition eXchange Language (CXL) and the capability to
support a subset of well-known interaction protocols (e.g., CONTRACT-NET), mainly stemming from FIPA
specifications.

Nevertheless, in the project, some reference design and implementations are provided with the aim of: (a)
providing a hands-on guidance to agent development and deployment, (b) lowering the access step to the
market by offering default, customizable implementations for the main agent roles envisioned in the market.
The latter motivation drives the definition of the initial two types of stakeholders’ agents, presented in this
architecture specification: the Requester agent and the Supplier agent.

Requester agent

The Requester Agent is the agent exploited by a factory to request the execution of an existing supply chain
or to initiate a new supply chain. Due to the dynamics of exchanges pursued in COMPOSITION, there is no
actual distinction between the two processes, i.e., for any supply need a new chain is formed and a new
execution of the chain is triggered. The Requester agent may act according to several negotiation protocols,
which can possibly be supported by only a subset of the agents active on a specific marketplace instance.
The baseline protocol, which must be supported by any COMPOSITION agent, is the so-called CONTRACT-
NET. In such a protocol, a Requester agent plays the role of “Initiator”.

While describing the CONTRACT-NET is not in the focus of this document, a sample exchange between the
Requester agent and its Supplier agents counterpart is reported in Figure 29, for the sake of clarity.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 46 of 96 Submission date: 2017-07-17

Figure 29. CONTRACT-NET protocol execution.

In the CONTRACT-NET, a requester agent generates at a certain time a new Call for Proposal (CFP)
message and sends it to all the agents potentially able to fulfil the request, e.g., identified through a call to
the Matchmaker agent. Supplier agents receiving the CFP may either respond with an offer or not. If they
respond, the response shall be sent back to the requester within the CFP expiration times, otherwise they
will not be considered in the subsequent protocol step. At the CFP expiration deadline, the requester agent
collects all received offers and computes for each of them a so-called utility function. The utility function
evaluates how good an offer is, with respect to the agent internal evaluation metrics. Computed values are
then exploited to rank received offers in decreasing utility values and to select the best one. Upon selection
of the winning offer, an ACCEPT message is sent back to the offer originator while all the agents whose
offers have been discarded will receive a REJECT message.

To support the CONTRACT-NET protocol, on the requester side, a set of activities has been defined, which
specifies formally the steps followed by the Requester agent in handling the negotiation. Figure 30 reports
the corresponding UML activity diagram. Together with direct support to negotiation for supply chain
formation and execution, the Requester agents might perform a set of parallel activities. These include,
among the others, exchanging reputation data with other agents deployed on the marketplace (see Figure 31
and Figure 32) or routing relevant information from the factory (intra-factory side) to a selected set of
recipients (inter-factory side), see Figure 33.

Overall, the comprehensive behaviour of a COMPOSITION request agent might be really complex, as shown
by the activity diagram of the first design of default Requester agent reported in Figure 34.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 47 of 96 Submission date: 2017-07-17

Figure 30. CONTRACT-NET activity diagram at the requester side.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 48 of 96 Submission date: 2017-07-17

Figure 31. Reputation gathering activity.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 49 of 96 Submission date: 2017-07-17

Figure 32. Reputation reporting activity, with possible lies.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 50 of 96 Submission date: 2017-07-17

Figure 33. Information routing behaviour of the Requester agent.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Figure 34. The initial behaviour specification for the COMPOSITION Requester agent.

Supplier Agent

The Supplier agent is the counterpart of the Requester agent on the composition marketplace. It is usually
adopted by actual suppliers to respond to supply requests coming from other stakeholders in the
marketplace. Factories transforming goods typically employ at least one Requester agent, to get prime
goods and one supplier agent to sell intermediate products to other factories.

Supplier agents can in principle support many, different negotiation protocol, however all suppliers in
COMPOSITION should at least be able to deal with CONTRACT-NET negotiations (see Figure 35). In
parallel, they may carry many other activities, as in the Requester case. Figure 36 reports the initially
designed behaviour of a COMPOSITION default supplier, including reputation exchange mechanisms.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 52 of 96 Submission date: 2017-07-17

Figure 35. CONTRACT-NET activity diagram for the Supplier Agent.

Figure 36. The initial behaviour specification for the COMPOSITION Supplier agent.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 53 of 96 Submission date: 2017-07-17

5.3.10 Marketplace Management

The Marketplace Management component is composed of two main elements respectively named the
Marketplace Management Portal and the actual Marketplace Management Services. The former provides a
web-based UI for managing a set of Composition Marketplaces, whereas the latter provides the backend,
empowering the UI functions and allowing direct configuration and control of the marketplace event broker.

Figure 37. Marketplace Management component.

Marketplace Management components are designed to support many operations that are crucial for the
COMPOSITION ecosystem. For example, the Marketplace Management allows stakeholders to join the
COMPOSITION marketplaces and to receive the agent credentials and configuration parameters required for
joining the corresponding agent containers.

Whenever a new stakeholder joins the COMPOSITION Open Marketplace, some specific data is required on
the kind of business pursued by the stakeholder, on the category of goods provided and/or required, etc.
This data is leveraged by the Management Portal to support faceted search of available stakeholders, e.g.,
to conduct preliminary analysis of possible targets of offers and/or possible actors to approach for selling
services. Moreover, the same data is propagated to the Matchmaker agent, which can take better decisions
about possible matches between supply needs and registered suppliers.

With respect to other COMPOSITION components, the Marketplace Management is not yet completely
specified in this iteration of the architecture. The inner components of both the Marketplace Management
Portal and the corresponding backend service are not yet settled. They might vary, with respect to Figure 37,
depending on the formalization of user needs and interactions currently under development. Nevertheless, a
solid set of use cases describing the main functions that need to be provided at the end user level has
already been defined, and is reported in Figure 38.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 54 of 96 Submission date: 2017-07-17

Figure 38. The Marketplace Management use cases.

These use cases are currently driving the complete specification of the management components and of the
interactions between such components and the other software actors defined in the marketplace. More
specifically, we are currently in the process of finalizing the initial Marketplace Management Portal mock-up
to confirm design decisions and then drive the identification of needed sub-components and requirements at
both the UI and the backend services level. For the sake of clarity, the currently envisioned interactions
between end users and the portal, and corresponding UI wireframes are reported in Figure 39.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 55 of 96 Submission date: 2017-07-17

Figure 39. Initial Marketplace Portal mock-up and navigation.

5.3.11 Security Framework

 Introduction 5.3.11.1

The Security Framework implements the security core mechanisms aiming to ensure the security,
confidentiality, integrity and availability of the managed information for all authorized Composition
stakeholders. Below there is an overview of the current identified components that will conform the Security
Framework.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 56 of 96 Submission date: 2017-07-17

Figure 40. Components of the Security Framework.

The current components in the Security have been grouped in for main categories, each of them focusing on
different security tasks:

1. Authentication:

a. Keycloak: Open source Identity and Access Management solution.

b. RabbitMQ Authentication Service: Service that relays in Keycloak and Authorization Service to
override built-in RabbitMQ authentication mechanisms.

2. Authorization:

a. Authorization Service: Atos tool based on XACML3.0 that provides authorization and privacy
access control to resources

3. Log-Trust-IPR

a. Multichain: Blockchain based on Bitcoin with added functionalities.

b. Multichain REST API: Will provide functionalities based on blockchain.

4. Cybersecurity:

a. SIEM: Atos tool that provides the capabilities of a Security Information and Event Management
(SIEM) solution with the advantage of being able of handling large volumes of data and raise
security alerts from a business perspective.

b. Cyber-Agents: These components are responsible to catch the events that later will be analysed
by the SIEM.

In front of all web applications and services, in this case Keycloak, RabbitMQ Authentication Service,
Authorization Service and Multichain REST API; Nginx will be used as reverse proxy configured for using
TLS/SSL.

The following sections will provide details on each of the components and their categories.

 Authentication 5.3.11.2

The components in this category are the responsible of providing the authentication mechanisms for users,
applications, services and devices.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 57 of 96 Submission date: 2017-07-17

5.3.11.2.1 Keycloak

Keycloak
16

 is an open source Identity and Access Management solution. Some of the features are:

 Single-Sign On: Authenticate on Keycloak rather on different applications. One single login will allow
access to multiple applications and/o services.

 Identity Brokering and Social Login: Enable login with social networks such as Google, Facebook,
Twitter and GitHub.

 User Federation: Connect directly to LDAP and Active Directory servers.

 Standard Protocols: OpenID Connect OAuth 2.0 and SAML.

Figure 41. Keycloak administration interface.

5.3.11.2.2 RabbitMQ Authentication Service

This component will implement the needed interfaces to override RabbitMQ built-in authentication and
authorization engine and it will make use of Keycloak and Authorization Service for authentication and
authorization instead.

 Authorization 5.3.11.3

This category is responsible of all aspects about authorization mechanisms. Only one component has been
identified under this category, the Authorization Service, which is a tool based on XACML 3.0

5.3.11.3.1 Authorization Service

The Authorization Service is a tool based on XACML 3.0 that provides authorization and privacy access
control to resources. It provides two different functionalities:

16

 http://www.keycloak.org

http://www.keycloak.org/

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 58 of 96 Submission date: 2017-07-17

- Policy management: Ability to manage policies. This means generating, storing, removing and
modifying policies.

- Policy enforcement: Ability to enforce that a given access request for a specific resource fulfils the
requirements of the policies applicable to the resource trying to be accessed.

 Log, Trust and IPR 5.3.11.4

This category is responsible of the component that will contribute to the protection of IPR, the creation of
trust and the audit trail for manufacturing and supply chain data.

5.3.11.4.1 Multichain

Multichain
17

 is a private blockchain platform based on Bitcoin enhanced with added functionalities like
managed permissions and data streams. Data streams are separately permissioned entities in the
blockchain optimized for logging data in key-value pairs, as opposed to transactions involving assets (e.g.
bitcoins). Several blockchains may be run in parallel, with managed permissions and several data streams
per chain. The ability to run multichain in a consortium with a controlled set of block validators (“miners”)
negates the need for proof-of-work mining, making the generation of blocks, and consequently transaction
validation, much faster.

 Cyber-Security 5.3.11.5

The components on this category focuses on the analysis of the cyber security in collaborative
manufacturing and logistics ecosystems, identifying the variety of attacks (such as abuse of privileges, denial
of access…) that could affect and be more relevant for the availability and reliability of the platform and
infrastructure and potential remediation measures to mitigate their effects.

5.3.11.5.1 SIEM

SIEM provides the capabilities of a Security Information and Event Management (SIEM) solution with the
advantage of being able of handling large volumes of data and raise security alerts from a business
perspective thanks to the analysis and event processing in a Storm cluster. The main SIEM functionalities
can be summarized in the following points:

- Real-time collection and analysis of security events.

- Prioritization, filtering and normalization of the data gathered from different sources.

- Consolidation and correlation of the security events to carry out a risk assessment and generation of
alarms and reports.

5.3.11.5.2 Cyber-Agents

These components are responsible to catch the security events and transmit them to SIEM to be analysed.
They are installed on the systems that need to be secured and their configuration may differ from one
installation to another depending on the events to be monitored.

 Nginx 5.3.11.6

Nginx
18

 is a free and open-source web server software, which can also be used as a reverse proxy, load
balancer and HTTP cache. Currently it´s only envisioned to be used as a reverse proxy in front of the web
applications and services providing an additional security layer. It will also provide Transport Layer Security
(TLS) encryption capabilities to all the applications and services behind it.

17

 http://www.multichain.com
18

 https://nginx.org/

http://www.multichain.com/
https://nginx.org/

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 59 of 96 Submission date: 2017-07-17

5.4 Information View

5.4.1 Data Models

 Overview 5.4.1.1

Figure 42. Dependencies of data models used in the system.

The Digital Factory Model (DFM) contains both types and instances of the intra-factory components, e.g.
production lines, products and sensors. This information will be used by e.g. the BMS to connect the physical
sensors to the DFM instances and propagate this information to the LinkSmart middleware to identity the
sensor data. The information is also used to build the topics in the message broker by which other
components can subscribe to live data. The broker topic schemas have not yet been defined.

The process models describe the production process, linking information in the system to the process
context used in the Decision Support System.

The OGC SensorThings Data Model is the used for system-generated data, e.g. data in the IIMS that has
passed through the LinkSmart middleware and is exposed in inter-component communication will use the
OGC SensorThings Data Model, with links to the DFM types and instances.

The inter-factory domain is modelled in the Marketplace Ontology, and expressed in the Composition
Exchange Language (CXL) used for agent communication.

 Process Models 5.4.1.2

The goal of process models in COMPOSITION is to use common formats or standards to describe the
production process. With such process models, process-oriented monitoring is made possible. By definition,
process-oriented monitoring is a monitoring strategy that builds correlation measured values from sensors to
a specific process procedure and a specific product instance in a production line, so that those sensor values
could be further analysed within context. For example, with process-oriented monitoring it is possible to
investigate how much energy is consumed while producing a specific PCB panel in solder printing. Process-
oriented monitoring opens up possibilities for different big data analysing strategy, such as real-time
abnormalities detection, product quality prediction etc.

The process models of the industrial processes will follow the Business Process Model and Notation (BPMN)
standard. BPMN is a standard for business process modelling that provides a graphical notation for
specifying business processes in a Business Process Diagram (BPD), based on a flowcharting technique
very similar to activity diagrams from Unified Modelling Language (UML). Besides the graphical
representation, the standard also specifies the XML schema for describing BPMN, which makes it easy to
communicate between different systems.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 60 of 96 Submission date: 2017-07-17

Different elements from BPMN are adopted to model manufacture process in process models. First of all,
production procedures will be modelled as activities in BPMN. The procedure will be modelled according to
its property, such as if it is a manual task, or if it is an automatic task finished by machines. Between
activities there are intermediate message events, which matches to the corresponding sensor signals. These
message events act as a transition between activities, which is triggered only when the matching sensor
signals is received. With this structure, we can ensure that the BPMN virtual process is always synchronized
with the real product process. Gateways are also utilized to model conditional forks during manufacture
process.

During runtime, the process models will be instantiated and managed by a BPMN engine, such as the Activiti
BPMN Engine. One can imagine the relation between the process model and an instantiated process as the
relation between class and object in object oriented programming. Typically, each product on the line is
represented by one instantiation of the model, tracking its current activity. This strategy enables a real-time
matching between sensor values and the correspondent workpiece in the production line.
Figure 43 shows an example of a process model describing the production line of BSL. Notice that the
process consists of many activities (rectangles in the diagram), each of which represents one step in
production, such as laser marking PCB, screen printing solder, inspecting solder, etc. Between activities are
intermediate message events, which will only be triggered by the matching sensor signals. Exclusive
gateways are also used to model choices in process, such as if panel fails to pass Inspect solder test, it will
be rejected to conveyor belt for either manual touch-up or touch-up in machine.

Figure 43. Initial BPMN diagram of BSL production line.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 61 of 96 Submission date: 2017-07-17

 Digital Factory Model 5.4.1.3

COMPOSITION Digital Factory Model (DFM) aims at the digitalization of industrial aspects. It is responsible
for modelling and storing both static and dynamic (real-time) information acquired from various
heterogeneous sources in the factory in a common format. It offers effective use of resources and knowledge
and provides all necessary means for the direct manipulation of the overall Digital Factory concept as a
single, but complex entity. DFM is based on XML syntax and popular standards such as ANSI ISA-
95/B2MML, gbXML, BPMN, and x3d and provides a high level of simplicity, extensibility, interoperability and
openness. It is implemented as XML schema. The DFM instances will be XML files. The structure of DFM is
separated in two basic components:

1. Information Model which describes static information: buildings, equipment, assets, actors,
procedures, installed sensors and business processes related to the project.

2. Events describe the real-time dynamic information related to the factory including events,
measurements, alerts etc.

Figure 44. High level structure of COMPOSITION DFM XML schema.

Main Input(s):

 LinkSmart middleware

Main Output(s):

 LinkSmart middleware

 Simulation and Forecasting Tool

 Decision Support System (DSS)

 UI components

The DFM will interact with LinkSmart middleware in the cases a real-time data exchange will be needed.
LinkSmart will collect all the information (e.g. physical equipment’s real-time data) from the factory and store
it to DFM. On the other hand, the LinkSmart middleware retrieves stored data from DFM and provide them to
other IIMS components. Also, DFM will feed Simulation and forecasting tool and DSS with data. In order to
create simulations, predictions and recommendations both simulation tool and DSS will be use information
providing by DFM instances.

 Composition eXchange Language 5.4.1.4

Agents communicate through messages encoded in a dedicated language named Composition eXchange
Language (CXL). Rather than defining yet another agent communication language, the consortium decided

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 62 of 96 Submission date: 2017-07-17

to stick to existing standards and to extend them wherever needed. CXL has therefore been designed as a
dialect of the well-known FIPA ACL language specification

19
, with a dedicated syntax (“codec” in the FIPA

jargon) and with reference to a well-defined set of ontologies for representing the message payload data.

A CXL message is composed of: (a) an almost fixed set of parameters, identifying the message purpose,
sender and language, (b) a variable payload whose content depends on the message type, and typically is
encoded according to an explicitly defined ontology. Table 4 depicts the exact fields defined in CXL. Each of
them has a 1-to-1 mapping to the corresponding FIPA ACL message parameter.

Table 4. CXL message structure.

Message Parameter Description

Act Identifies the type of communicative act
represented by the message, corresponds to the
FIPA ACL performative parameter, and assumes
the same possible values.

Sender The originator of the message (an agent)

Receiver A list of recipients of the message (i.e., a set of
agents)

reply-to The agent to which replies for this message shall
be sent

Language The language in which the content is encoded

Encoding The encoding of the content language expressions
(mime type)

Ontology This parameter identifies the set of ontologies that
describe the classes and relationships that are valid
expressions of the message payload. Such
ontologies are provided as a list of URIs.

Protocol Identifies the agent-communication protocol to
which this message adheres (e.g., CONTRACT-
NET for basic negotiations).

Content The actual payload of the message

conversation-id Provides an identifier for the sequence of
communicative acts (messages) that together form
a conversation

Reply-with Provides an expression that the message recipient
shall include in the answer, exploiting the in-reply-to
field. This allows following a conversation when
multiple dialogues occur simultaneously.

In-reply-to Denotes an expression that references and earlier
action to which this message is a reply

Reply-by Identifies the latest date/time by which the sender
agent would like to receive a reply. Replies
received later that the time specified by this
parameter can be freely ignored.

CXL messages are encoded in JSON, supporting easy manipulation in a multitude of programming
languages. Additional encodings, e.g., byte-efficient, representations may be considered for particular
deployments where the message size may affect the performance of the COMPOSITION marketplace. The
CXL JSON coding has been formalized by exploiting a specific JSON schema, reported below.

{

19

 http://www.fipa.org/specs/fipa00061/SC00061G.pdf

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 63 of 96 Submission date: 2017-07-17

 "description":"The JSON syntax specification of the COMPOSITION CXL language, mainly focus on the

message envelope",

 "type":"object",

 "properties":{

 "act":{

 "type":"string",

 "enum":["accept-proposal","agree","cancel","cfp","confirm","disconfirm","failure","inform","not-

understood","query-if","query-ref","refuse","reject-proposal","request","request-when","request-

whenever","subscribe","inform-if","inform-ref","proxy","propagate","propose"]

 },

 "sender":{

 "type":"object",

 "description":"the message originator",

 "properties":{

 "name":{

 "type":"string"

 },

 "addresses":{

 "type":"array",

 "items": {

 "type":"string"

 }

 },

 "user-defined":{

 "type":"object"

 }

 }

 },

 "receiver":{

 "type":"array",

 "description":"The set of recipients for this message",

 "items":{

 "type":"object",

 "description":"the message recipient",

 "properties":{

 "name":{

 "type":"string"

 },

 "addresses":{

 "type":"array",

 "items": {

 "type":"string"

 }

 },

 "user-defined":{

 "type":"object"

 }

 }

 }

 },

 "reply-to":{

 "type":"object",

 "description":"The agent to which replies for this message shall be sent",

 "properties":{

 "name":{

 "type":"string"

 },

 "addresses":{

 "type":"array",

 "items": {

 "type":"string"

 }

 },

 "user-defined":{

 "type":"object"

 }

 }

 },

 "language":{

 "type":"string",

 "description":"the language used for encoding the message content"

 },

 "encoding":{

 "type":"string",

 "description":"the specific encoding used for language expressions, typically a mime type"

 },

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 64 of 96 Submission date: 2017-07-17

 "ontology":{

 "type":"array",

 "description":"The set of ontologies defining the primitives that are valid within the message

content",

 "items":{

 "type":"string",

 "format":"url"

 }

 },

 "protocol":{

 "type":"string",

 "description":"Identifies the agent communication protocol to which the message adheres"

 },

 "content":{

 "type":"object",

 "description":"The actual payload of the message"

 },

 "conversation-id":{

 "type":"string",

 "description":"Provides an identifier for the sequence of communicative acts (messages) that

together form a conversation"

 },

 "reply-with":{

 "type":"string",

 "description":"Provides an expression that the message recipient shall include in the answer,

exploiting the in-reply-to field. This allows following a conversation when multiple dialogues occur

simultaneously."

 },

 "in-reply-to":{

 "type":"string",

 "description":"Denotes an expression that references and earlier action to which this message is

a reply"

 },

 "reply-by":{

 "type":"string",

 "format":"date-time"

 }

 },

 "additionalProperties":false

}

This design choice supports syntax validation of messages exchanged between agents, thus preventing
elaboration of messages that are not conforming to the language primitives.

While the CXL-JSON format specifies the envelope of agent messages, the message content depends on
both the communication protocol adopted by the agents and on the reference ontology specified through the
ontology parameter. Ontology expressions in the content field shall be encoded in JSON-LD for the message
to be validated according to the CXL-JSON schema.

At the current stage of development 2 main vocabularies, i.e., ontologies, have been identified and
catalogued for use in the composition CXL. The first vocabulary is called FIPA-Agent-Management and it
stems from the FIPA ACL specifications. The FIPA-Agent-Management ontology defines the primitives used
by agents to register themselves and interact with the AMS agent. The second vocabulary, instead, is a full-
blown ontology defined in the context of the COMPOSITION project and thoroughly described in Section
5.4.1.5.

To exemplify how messages are encoded in CXL, and how difficult is handling the corresponding syntax, let
us consider the CONTRACT-NET exchanges depicted in Figure 35. At the beginning of a CONTRACT-NET
conversation, the Requester agent sends a CFP message to a selected set of suppliers. A sample CFP
message encoded in CXL-JSON is reported below.

{

 "act":"cfp",

 "sender":{

 "name":"RequesterAgent1",

 "address":["amqp://reqagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"cd9cf485-c7cc-42f8-b209-1ac9c6faa2e6"

 }

 },

 "receiver":[{

 "name":"SupplierAgent1",

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 65 of 96 Submission date: 2017-07-17

 "address":["amqp://suppagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"428a96d7-ad9a-499f-a13e-cf59e02ba469"

 }

 }],

 "reply-to":{

 "name":"RequesterAgent1",

 "address":["amqp://reqagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"cd9cf485-c7cc-42f8-b209-1ac9c6faa2e6"

 }

 },

 "language":"x-cxl-json",

 "encoding":"x-application/json",

 "ontology":[

 "http://www.composition-project.eu/cxl/ontology#"

],

 "protocol":"x-contract-net",

 "content":{

 "@context":"http://www.composition-project.eu/cxl/ontology#",

 "offering":{

 "hasBusinessFunction":"Sell",

 "includes":"scrap-metal-collection"

 },

 "scrap-metal-collection":{

 "minimumWeigth":"10",

 "weightUnit":"t",

 "collectionMean":"truck"

 }

 },

 "conversation-id":"cd9cf485-c7xk-42f8-b209-1ac9c6faa2e6",

 "reply-with":"propose-scrap-1",

 "reply-by":"2017-05-30T00:00:00+01:00"

}

Suppliers, may either provide back an offer or not. In case an offer is provided, a possible CXL encoding of
such an offer could be as follows.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 66 of 96 Submission date: 2017-07-17

{

 "act":"propose",

 "sender":{

 "name":"SupplierAgent1",

 "address":["amqp://suppagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"428a96d7-ad9a-499f-a13e-cf59e02ba469"

 }

 },

 "receiver":[{

 "name":"RequesterAgent1",

 "address":["amqp://reqagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"cd9cf485-c7cc-42f8-b209-1ac9c6faa2e6"

 }

 }],

 "reply-to":{

 "name":"SupplierAgent1",

 "address":["amqp://suppagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"428a96d7-ad9a-499f-a13e-cf59e02ba469"

 }

 },

 "language":"x-cxl-json",

 "encoding":"x-application/json",

 "ontology":[

 "http://www.composition-project.eu/cxl/ontology#"

],

 "protocol":"x-contract-net",

 "content":{

 "@context":"http://www.composition-project.eu/cxl/ontology#",

 "offering":{

 "hasBusinessFunction":"Sell",

 "includes":"scrap-metal-collection",

 "hasPriceSpecification":{

 "hasCurrency":"USD",

 "hasCurrencyValue":"65.5",

 "validThrough":"2017-11-30T23:59:59"

 }

 },

 "scrap-metal-collection":{

 "minimumWeigth":"5",

 "weightUnit":"t",

 "collectionMean":"truck"

 }

 },

 "conversation-id":"cd9cf485-c7xk-42f8-b209-1ac9c6faa2e6",

 "in-reply-to":"propose-scrap-1"

}

Finally, when the negotiation deadline expires the winner receives an ACCEPT message, while the other
involved suppliers will receive a REJECT message. Corresponding CXL messages are reported below, in
the same order (i.e.,ACCEPT followed by REJECT).

{

 "act":"accept-proposal",

 "sender":{

 "name":"RequesterAgent1",

 "address":["amqp://reqagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"cd9cf485-c7cc-42f8-b209-1ac9c6faa2e6"

 }

 },

 "receiver":[{

 "name":"SupplierAgent1",

 "address":["amqp://suppagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"428a96d7-ad9a-499f-a13e-cf59e02ba469"

 }

 }],

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 67 of 96 Submission date: 2017-07-17

 "reply-to":{

 "name":"RequesterAgent1",

 "address":["amqp://reqagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"cd9cf485-c7cc-42f8-b209-1ac9c6faa2e6"

 }

 },

 "language":"x-cxl-json",

 "encoding":"x-application/json",

 "ontology":[

 "http://www.composition-project.eu/cxl/ontology#"

],

 "protocol":"x-contract-net",

 "content":{

 "@context":"http://www.composition-project.eu/cxl/ontology#",

 "offering":{

 "hasBusinessFunction":"Sell",

 "includes":"scrap-metal-collection",

 "hasPriceSpecification":{

 "hasCurrency":"USD",

 "hasCurrencyValue":"65.5",

 "validThrough":"2017-11-30T23:59:59"

 }

 },

 "scrap-metal-collection":{

 "minimumWeigth":"5",

 "maximumWeight":"15",

 "weightUnit":"t",

 "collectionMean":"truck"

 }

 },

 "conversation-id":"cd9cf485-c7xk-42f8-b209-1ac9c6faa2e6",

 "in-reply-to":"propose-scrap-1",

 "reply-with":"propose-scrap-1-confirmed"

}

{

 "act":"reject-proposal",

 "sender":{

 "name":"RequesterAgent1",

 "address":["amqp://reqagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"cd9cf485-c7cc-42f8-b209-1ac9c6faa2e6"

 }

 },

 "receiver":[{

 "name":"SupplierAgent1",

 "address":["amqp://suppagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"428a96d7-ad9a-499f-k734-cf59e02ba469"

 }

 }],

 "reply-to":{

 "name":"RequesterAgent1",

 "address":["amqp://reqagent1@market1/test"],

 "user-defined":{

 "composition-agent-uuid":"cd9cf485-c7cc-42f8-b209-1ac9c6faa2e6"

 }

 },

 "language":"x-cxl-json",

 "encoding":"x-application/json",

 "ontology":[

 "http://www.composition-project.eu/cxl/ontology#"

],

 "protocol":"x-contract-net",

 "content":{

 "@context":"http://www.composition-project.eu/cxl/ontology#",

 "offering":{

 "hasBusinessFunction":"Sell",

 "includes":"scrap-metal-collection",

 "hasPriceSpecification":{

 "hasCurrency":"USD",

 "hasCurrencyValue":"65.5",

 "validThrough":"2017-11-30T23:59:59"

 }

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 68 of 96 Submission date: 2017-07-17

 },

 "scrap-metal-collection":{

 "minimumWeigth":"5",

 "maximumWeight":"5",

 "weightUnit":"t",

 "collectionMean":"truck"

 }

 },

 "conversation-id":"cd9cf485-c7xk-42f8-b209-1ac9c6faa2e6",

 "in-reply-to":"propose-scrap-2"

}

As future step, the CXL will be extensively documented and additional supported ontologies will be defined
with the relative syntax and primitives, with particular focus on data-forward and reputation exchange
communications currently under design.

 Marketplace Ontology 5.4.1.5

COMPOSITION’s collaborative manufacturing services ontology and language supports flexible specification
and execution of manufacturing collaboration schemes by describing both relations between business
entities and manufacturing services/ resources. It is developed in OWL format and well-known ontologies for
e-commerce and manufacturing domain modelling are imported. More precisely Manufacturing Service
Description Language or MSDL (Ameri, 2006) and MAnufacturing’s Semantics Ontology or MASON
(Lemaignan, 2006) are imported into COMPOSITION ontology and provide sufficient description of
manufacturing services, capabilities and resources(machine-tools, tools, human resources, geographic
resources like plants and workshops). In order to describe relations between business entities the
GoodRelations Language Reference (GoodRelations, 2017) ontology is also imported to COMPOSITION
one. GoodRelations ontology provides all the necessary classes and properties for the description of offers
and requests among business entities.

Figure 45. High level COMPOSITION Ontology class diagram.

COMPOSITION Ontology will be used as the knowledge base for the Marketplace. No user interface will be
needed. The Marketplace’s agents will be able to export/import data from/to ontology by applying queries
(e.g. SPARQL queries) using the Ontology Query API. COMPOSITION Matchmaker will infer knowledge by
applying semantic rules in the ontology and then it will be able to match offers and requests for
manufacturing services, raw materials and products between the involved business entities.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 69 of 96 Submission date: 2017-07-17

 OGC SensorThings 5.4.1.6

The SensorThings API
20

 is an OGC
21

 standard specification, part of the OGC Sensor Web Enablement
standards

22
. This standard has been selected as the generic representation of data managed by the

COMPOSITION system (see Figure 46 for the SensorThings data model). It is also used in the LinkSmart
platform.

23

The OGC SensorThings API consists of the Sensing and Tasking profiles.

The Sensing profile allows IoT devices and applications to CREATE, READ, UPDATE, and DELETE (i.e.,
HTTP POST, GET, PATCH, and DELETE) IoT data and metadata in a Thing service. Managing and
retrieving observations and metadata from IoT sensor systems is one of the most common use cases. As a
result, the Sensing profile is designed based on the ISO/OGC Observation and Measurement (O&M) model
(OGC and ISO 19156:2011).

The key to the model is that an Observation is modelled as an act that produces a result whose value is an
estimation of a property of the observation target or FeatureOfInterest. An Observation instance is classified
by its event time (e.g., resultTime and phenomenonTime), FeatureOfInterest, ObservedProperty, and the
procedure used (often corresponding to a Sensor). Things are also modeled in the SensorThings API,
together with the historical set of their geographical positions

20

 http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
21

 http://www.opengeospatial.org/
22

 http://www.opengeospatial.org/ogc/markets-technologies/swe
23

 https://linksmart.eu/redmine/projects/iot-data-processing-agent/wiki/Usage_IoT_Data-Processing_Agent_

 Figure 46. OGC SensorThings Data Model.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 70 of 96 Submission date: 2017-07-17

More specifically, in the Sensing profile, a Thing has Locations and HistoricalLocations. It can also have
multiple Datastreams associated. A Datastream is a collection of Observations grouped by the same
ObservedProperty and Sensor. An Observation is an event performed by a Sensor that produces a result
whose value is an estimate of an ObservedProperty of the FeatureOfInterest.

Following subsections better detail the single data model entries.

5.4.1.6.1 Thing

The OGC SensorThings API follows the ITU-T definition, i.e., with regard to the Internet of Things, a thing is
an object of the physical world (physical things) or the information world (virtual things) that is capable of
being identified and integrated into communication networks (Y.2060, 2012).

5.4.1.6.2 Location

The Location entity locates the Thing or the Things it is associated with. A Thing’s Location entity is defined
as the last known location of the Thing.

5.4.1.6.3 HistoricalLocation

A Thing’s HistoricalLocation entity set provides the current (i.e. last known) and previous locations of the
Thing with their time.

5.4.1.6.4 Datastream

A Datastream groups a collection of Observations and the Observations in a Datastream measure the same
ObservedProperty and are produced by the same Sensor.

5.4.1.6.5 Sensor

A Sensor is an instrument that observes a property or phenomenon with the goal of producing an estimate of
the value of the property.

5.4.1.6.6 ObservedProperty

An ObservedProperty specifies the phenomenon of an Observation.

5.4.1.6.7 Observation

An Observation is an act of measuring or otherwise determining the value of a property (ISO19156, 2011).

5.4.1.6.8 FeatureOfInterest

An Observation results in a value being assigned to a phenomenon. The phenomenon is a property of a
feature, the latter being the FeatureOfInterest of the Observation (ISO19156, 2011). In the context of the
Internet of Things, many Observations’ FeatureOfInterest can be the Location of the Thing. For example, the
FeatureOfInterest of a wifi-connect thermostat can be the Location of the thermostat (i.e. the living room
where the thermostat is located in). In the case of remote sensing, the FeatureOfInterest can be the
geographical area or volume that is being sensed.

5.4.2 Data Persistence

The Deep Learning Toolkit needs to have historical data available to train the artificial neural networks,
although this only has to be available as unstructured bulk data, without query capabilities. The Intrafactory
Adaptation Layer has built-in storage for unprocessed shop-floor level data which can be used in this
capacity and LinkSmart also provides capabilities for storing historical observation data.

Data persistence will to a significant extent be handled internal to the components and exposed through the
component interfaces, in the case of component-specific data. However, there will still be a need to record
and query both shop-floor data and data generated by the COMPOSITION system, common to all
components. The Decision Support System and the Simulation and Forecasting Tool both need access to
structured historical data generated by the system, with query capabilities.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 71 of 96 Submission date: 2017-07-17

As mentioned above, this data is transported in OGC SensorThings format inside the system. The OGC
SensorThings API specifies how to store and retrieve data conforming to this model using a REST API or
MQTT. Any implementation of this API would thus be a natural choice of persistence mechanism. There are
open source implementations of the OGC SensorThings API available, e.g. GOST

24
 or

SensorThingsServer
25

, where observation data can be stored. These can be deployed in Docker containers
and may be used interchangeably in the system.

5.4.3 Data Flow

 Deep Learning and Big Data Analysis 5.4.3.1

As described in section 5.3.5, the Deep Learning Toolkit is deployed after the first three phases that take
place offline and relies on conspicuous historical datasets provided by the end user partners: the training,
validation and test datasets specific for each learning task are extracted from randomized data. During the
offline training activity, for each learning task, the most appropriate models are selected and configured for
optimal predictions. This process consists in iterating multiple times through model training and model
validation steps. During a training step, the optimal parameters are determined for a given combination of
model hyper-parameters, by minimizing prediction error over the training set. Subsequently, during the
validation phase, the trained model (as specified by its hyper-parameters and parameters values) is
validated against the validation dataset. In the end, the trained model with best validation score is selected
and its performances are assessed one more time against the test dataset, in the testing phase, to ensure
proper generalization. The model is then deployed inside the deep learning toolkit for online prediction and
continuous learning. The continuous online training process is represented as an activity diagram in the
figure below.

24

 https://github.com/FraunhoferIOSB/SensorThingsServer
25

 https://github.com/Geodan/gost

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 72 of 96 Submission date: 2017-07-17

Figure 47. Deep Learning Toolkit: online continuous learning model as activity diagram.

The online interactions and data flows between modules are described in the following. Raw data streams
from the shopfloor (IoT, sensors, machine data) are distributed through the middleware. The Big Data
Analysis module is responsible for preprocessing these data streams, which for instance may encompass
functionalities such as aggregation, marshalling, filtering, analyzing and caching. The output is a
preprocessed data stream (or a periodic emission of batches of buffered data) which is take as an input in
the prediction activity of the Deep Learning Toolkit module. Here – depending on specific prediction task –
the data might be further cached, finally data are processed by the trained model that output the predicted
targets. Considered the high relevance to decision making, the predicted targets are broadcasted over the
middleware for other IIMS modules to use or present to the user. Additionally, the Big Data Analysis module
can use these data as well, aiming to evaluate the actual accuracy Deep Learning Toolkit by comparing

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 73 of 96 Submission date: 2017-07-17

previous predictions with current shop floor data. This leads Big Data Analysis module to asynchronously
send rewarding signals to the Deep Learning Toolkit which use them as additional input to its continuous
learning activity. The latter aims at refining the training of the internal model exploiting data, predictions and
feedbacks from the Big Data Analysis module. This process results in updating the model so to achieve
better accuracy in pair with new report and statistics about the model itself. This model is published on the
middleware as well. The training process is represented as an activity diagram in the figure below.

The data flow of both processes are summarized by the component model in Figure 47, the upper part
referring to offline training and the lower one to online forecasting and retraining.

 Marketplace 5.4.3.2

Several kinds of information are exchanged at the marketplace level, some directly regarding supply-chain
formation and execution and some related to other activities such as reputation exchange, data transfer, etc.
While each kind of information flow deserves a dedicated description, reported in the following, it is important
to highlight that all such flows are based on common basic assumptions.

In particular, every information exchanged between software entities connected to the marketplace takes
form of a CXL message stream flowing from one originator agent to one or more recipient agents. Such a
design choice preserves independence of data flows from the actual agent implementation. Furthermore, it
does not impose a priori any particular stateful and/or stateless assumption such as, for example in REST-
based communication.

5.4.3.2.1 Agent-to-agent communication

Since agents are the company representatives on the marketplace, they have full control on information
crossing the company boundaries, and full control on (expected) recipients of such an information, thus
limiting the possibility for unknown subscribers to eavesdrop “confidential” agent-to-agent conversations (see
Section 6.1 for the corresponding security measures devised in the project).

From a very high-level standpoint, information exchanges over the marketplace can be of three main types:

 Supply-chain formation and execution data

 Monitoring data transferred to selected listeners, e.g., for supporting offer pushing scenarios,

 Reputation data exchanged between agents

These main flows involve several communication acts, between the different marketplace components.

Supply chain formation and execution

Supply chain formation, and execution, may be deployed differently depending on the actual complexity of
the involved agents, on the adopted discovery mechanisms and on the adopted negotiation protocol. In this
initial release of the COMPOSITION architecture, we envision 2 main cases respectively related to fully
fledged agents, able to autonomously match and rank requests and offers, and to “dumb” agents (e.g., base
or default implementations) requiring “help” to the platform Matchmaker agent to effectively discriminate
between acceptable and not acceptable proposals.

In the former case, i.e., when agents have enough intelligence to handle the matching and selection of
offers, the high-level information flow between “core” entities is deployed as in Figure 48.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 74 of 96 Submission date: 2017-07-17

Figure 48. High-level data flow (UML Interaction Diagram) between marketplace actors in a simple contract-net
exchange.

Following the message sequence, at some point in time an event in the intra-factory IIMS system generates
a request to start a bidding process for procuring a certain kind of material (1). The Requester Agent
contacts the Matchmaker agent to identify the most suited set of stakeholder agents currently active on the
market (2). Logic inference and rule-based reasoning on the business descriptions associated to agents
currently active on the market is performed and a list of candidates for negotiation is provided back (3).Once
retrieved the possible candidates, the requester agent creates and delivers Call For Proposal (CFP)
messages (4a,4b,4c,4d) to the agents identified by the matchmaker. Among these agents, some may belong
to a company that is currently not producing the required material, e.g., due to a programmed maintenance.
The corresponding agent thus refuses to participate in the negotiation and replies with a REJECT CXL
message (4b.4), while at the same time informs the company commercial manager that an order was missed
due to a downtime (4b.3). The other agents are instead able to participate to the negotiation and respond to
the CFP with a valid CXL OFFER message (4a.1, 4c.1, 4d.1). Once the bid deadline expires, the Requester
agent evaluates the offers and finds that the one coming from Supplier Agent 2 is maximizing its internal
utility function (evaluating how well a deal matches the IIMS-specified needs). It reacts to this situation by
accepting the offer from Supplier Agent 2 (5a) and by rejecting all the others (5c, 5b). In order to finalize the
negotiation the Supplier Agent 2 asks for explicit confirmation from a human counterpart (manager) in
company 2 (5a.1) and upon approval (5a.2), agrees to finalize the current deal (5a.3).

It is important to notice that for the sake of clearness, several intermediate passages have been omitted. In
particular, each message exchange relies on the marketplace message broker for the actual delivery and
exploits the marketplace security framework for checking message provenance. If we consider a single
agent-to-agent exchange, e.g., the one identified by the 4a, 5a sequence, the actual information exchanged
between agents, and their human counterparts) can be detailed as in the sequence diagram reported in
Figure 49.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 75 of 96 Submission date: 2017-07-17

Figure 49. Sequence diagram showing the information flow between to agents during a successful negotiation.

The second type of negotiation analysed in this first period of the project refers to cases where agents have
not enough computational power, or intelligence, to neither discriminate between acceptable and not
acceptable proposals nor rank such proposals in terms of achieved utility values. For similar scenarios, the
matchmaker agent can be exploited as external matcher (see Figure 50) and agents can safely delegate
evaluation of offers to such an agent.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 76 of 96 Submission date: 2017-07-17

Figure 50. Data flow for "dumb" or default agents.

Monitoring data transfer

During the marketplace operation, agents might require other agents to provide certain streams of “live” data
for performing activities that may be part of a previously negotiated deal or that might trigger new deals in a
push-modality. In COMPOSITION, for example, scrap metal management scenarios are adopting this
paradigm in the context of Closed Marketplaces, where waste management companies on the marketplace
are “trusted” by the market owner

26
. In these cases, the data owner agent is responsible to route required

information to the right recipient agents, through dedicated CXL messages (of type “inform”). Recipients, on
the other hand, shall require subscription to data streams needed for performing their own tasks, e.g.,
monitoring the scrap container levels and timely offer to collect wasted metal. Such a subscription process
exploits again a set of CXL messages, with a performative identifier equal to “subscribe”. The corresponding
sequence diagram is reported in Figure 51.

26

 Typically corresponding to the Requester in a pull interaction such as the one firstly discussed.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 77 of 96 Submission date: 2017-07-17

Figure 51. Data routing information flow.

In push interaction, exchanged follow a well-defined sequence. First, all interested agents contact the data
owner agent to verify that relevant data is actually available an potentially accessible (1,2,3). To perform
such an action, a CXL QUERY message is issued. The data owner may reply or not to the query, and in
case it decides to reply it might confirm or deny the existence or required data (1.1, 2.1, 3.1). In the example
reported in Figure 51 all supplier agents receive a confirmation response. They can therefore activate the
subscription process by sending a dedicated CXL SUBSCRIBE message to the data owner. At this point, the
data owner replies positively to 2 out of 3 agents (using a CXL AGREE message – 6,7), while due to internal
policies refuses subscription from the Supplier Agent 3 (using a CXL REFUSE message – 8.1). Sometimes
later, data messages matching the agent requests appear on the IIMS broker (to which the data owner agent
is subscribed) and the agent forwards such messages to the right recipients using CXL INFORM messages,
carrying required data as payload.

Reputation data exchange

As witnessed by currently available marketplace solutions, such as the Google Play or the Amazon market,
one of the key factor for successful adoption of the market is the availability of a solid reputation system. In
scenarios where the amount of stakeholders possibly involved in setting-up deals, and in dynamically

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 78 of 96 Submission date: 2017-07-17

forming supply chains, is huge, the capability to discriminate reliable sellers from lower quality providers is of
utmost importance. The COMPOSITION agent marketplace is designed to “mimic” the human-driven
reputation systems currently in use by letting agents exchange reputation information about other agents.
The approach, at this stage, is not yet completely defined; nevertheless, two main operation modes are
foreseen: a central, collaborative agent ranking system and an agent-level personal ranking system.

The first is implemented by the Matchmaker, which collects evaluations about concluded deals. Every agent
on the marketplace may decide to provide an evaluation for a certain deal (possibly driven by an underlying
human-level assessment of the deal results), for a certain agent. When new negotiations start, the
Matchmaker can exploit such reputation data to compute or refine the set of agents that are “compatible”
with a given offer. Additionally, reputation data might be inserted in the provided list of agents in order to let
the Requester decide to involve them or not, depending on some local reputation policy.

The second operation mode might be implemented by each agent. It consists of periodical “opinion”
exchanges between collaborating agents where the “opinion-seeking” agent contacts known stakeholders,
e.g., the one with which it had successful negotiations in the past, for gathering their opinion about a third
party agent (see Figure 52). Inquired agents might decide to reply to such a request or not, and they might
decide to provide false information attempting to reach monopolistic conditions

27
. Whatever decision they

take, at some point in time the opinion requester agent will receive back a “biased” view of the agent
marketplace, in terms of reputation values, that merged with its internal view will contribute to the “personal”
reputation system of the agent itself. Such a system will then be exploited to filter or re-rank “compatible”
agents received from the Matchmaker during negotiation, or to, e.g., refuse subscription requests from low
ranked agents.

Figure 52. Personal opinion sharing between agents.

5.4.3.2.2 IIMS to Agent communication

Agents and corresponding IIMS have a privileged relationship that is reflected in a particular set of
communication interfaces and interactions between the two systems. In a sense, a company agent is lying at
the boundary between the company IIMS and the COMPOSITION marketplace and acts as interface to the
latter. The agent has therefore a mixed nature by being at the same time an IIMS and a marketplace
component.

Typical communication paradigms employed between a factory IIMS and the factory agent are subject to
customization and/or adaptation commanded by the stakeholder needs / requirements. Nevertheless, in
COMPOSITION we design and support a certain number of communication means and paradigms,
depending on the task actually being carried by the IIMS. At the time of writing a precise specification is still
lacking, however 3 main communication means (and interaction patterns) are under consideration: REST-
based operation, queue-based messaging and publish-subscribe.

REST communication between the IIMS and the agent is envisioned for all cases in which the stakeholder
does not run the COMPOSITION IIMS on premises, but prefers to exploit its own management suite (even

27

 This option is currently investigated in research and requires the “liar” agent to find the best deal between telling lies and gaining
advantageous market positions and being spotted as a “liar” and get a very bad ranking.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 79 of 96 Submission date: 2017-07-17

manual management is allowed). In such a scenario, agents exposing their main functions through REST
endpoints are likely to be easier to integrate and might therefore promote early adoption of the
COMPOSITION marketplace.

When companies joining the COMPOSITION ecosystem decide to exploit the project IIMS, a privileged
connection between the IIMS and the company agent(s) can be foreseen. In such cases, the IIMS can
exploit the native communication infrastructure of the agent, i.e., its capability to handle distributed message
queues (e.g., using RabbitMQ). Such an option may leverage CXL (or extended versions of it) to encode
operating directives thus enabling a much easier and stricter interaction with the agent that natively supports
such a message-based interaction paradigm.

Finally, both in companies exploiting the COMPOSITION IIMS and in companies selecting other platforms, a
publish/subscribe interaction between the IIMS and the agent(s) is foreseen to effectively handle
asynchronous data delivery from the factory shop floor sensors, and management systems, to interested
agents on the marketplace. The publish-subscribe pattern, in fact, lets the agent subscribe to topics
corresponding to relevant data only, and to duly forward it to the final recipients over the marketplace.

It is important to notice that the brokering systems currently targeted in COMPOSITION can operate on both
distributed queue and publish-subscribe modes, thus gracefully supporting the last 2 operation modes, which
are expected to be active at the same time (see Figure 53 for a comprehensive overview).

Figure 53. Communication channels between the IIMS and the factory agent.

5.5 Deployment View

5.5.1 Docker

One of the critical points in adopting new systems in productive contexts is the need to perform
specific hardware and software set-up, which are typically difficult to deploy, as companies have
precise software deployment policies, rather strict options on operating systems and public access to
company IT services. These restrictions are strongly dependent on company-level decisions and are
the result of years of operation in real business.

In COMPOSITION, we have clear in mind that any particular technological requirement for the
COMPOSITION IIMS and Marketplace may hamper or slow down adoption of the platforms in the
real world. Therefore, after a careful evaluation of possible solutions, included PAAS and SAAS
solutions (which on the other hand could be difficult to handle due to data ownership issues), the
technical partners, in accordance with industrial stakeholders, identified Docker as a viable
deployment infrastructure.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 80 of 96 Submission date: 2017-07-17

Docker is an open-source project aiming at automating the deployment of applications as portable,
self-sufficient containers that can run virtually anywhere, on any kind of server. It can be considered
as a lightweight alternative to full machine virtualization provided by hypervisors such as ESXi, Xen
or KVM. While in the traditional hypervisor approaches each virtual machine (VM) needs its own
operating system, in Docker applications operate inside a container that resides on a single host
operating system that can serve many different containers at the same time.

Docker containers are designed to run on a wide range of platforms ranging from physical computers
to bare-metal servers and up to cloud clusters, e.g., based on OpenStack. Technically speaking
Docker extends the LinuX Containers (LXC) format designed to provide an isolated environment for
applications, by enabling image management and deployment services. Among supported platforms,
we can cite:

 Mac, Windows and Linux desktops

 AWS and Azure cloud services

 Windows, CentOS, Debian, Fedora, Oracle Linux, RHEL, SLES and Ubuntu servers.

This ensures the ability to deploy Docker-based COMPOSITION components on virtually all possible IT
infrastructure available on site. Since deployment is a crucial part of the agile development process adopted
in COMPOSITION, components are wrapped into Docker images since the very beginning. All continuous
integration and testing processes in the project rely on Docker and act upon Docker images. This ensures
full compatibility of systems under development with the targeted deployment tools.

In order to spread the Docker approach among the consortium, and to support such a container-based
integration approach, a dedicated “test” server has been configured and made available to all technical
partners for benchmarking and testing solutions under development (see Figure 54).

Figure 54. Example of Docker Management platform showing a set of deployed containers.

Thanks to a dedicated web management tool, namely Portainer
28

, also deployed as a Docker container,
partners and in general all technical stakeholders have the ability to publish, run and test the single
COMPOSITION components under their respective responsibility. Continuous monitoring and logging
infrastructure allow deep analysis of the performances of deployed software that can both be carried before
the final deployment inside factories and during real-world operation (see Figure 55).

28

 http://portainer.io/

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 81 of 96 Submission date: 2017-07-17

Figure 55. Example of single container monitoring.

Docker natively supports distribution and replication of services. Moreover, it can easily be deployed on
cloud-based platforms. This flexibility is a strong hint to the fact that such a deployment design choice will not
generate issues when upscaling of performance will be required.

We expect to gather the first feedbacks from end-users and some confirmation of the viability of this
approach after the completion of the first development cycle, expected to happen around the end of the first
year of the project.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 82 of 96 Submission date: 2017-07-17

6 System Quality Perspectives

6.1 Security Perspective

6.1.1 Authentication and Authorization

One of the key aspects of the security in COMPOSITION are the authentication and authorization
mechanisms. These tasks fall on two components: Keycloak responsible for identity and access
management, and the Authorization Service responsible for authorization and access control to data and
resources. To keep Keycloak and Authorization Service as the core components for authentication and
authorization there is the need add other components like the RabbitMQ Authentication Service which is a
service that will allow overriding RabbitMQ built-in mechanisms for authentication and authorization. In case
there is the need to do the same as with RabbitMQ for another COMPOSITION platform component the
same procedure will be used if possible.

The next figure shows an overview of the architecture of the Authentication and Authorization framework:

Figure 56. The Authentication and Authorization framework.

Any user or application needs to be identified through Keycloak before having access to the secured
COMPOSITION applications and services. Once identification is successful Keycloak issue a token which is
valid for a limited time and should be renewed after it expires. This token is also the one used by the
Authorization Service to allow or deny access to data and resources based on the rights of the
user/application and the rules stored in the Authorization Service.

6.1.2 Blockchain Uses

Other areas where COMPOSITION aims to offer a high level of security are:

 IPR, Confidentiality and Data integrity

 Log and Traceability

For that it has been considered the use of a blockchain implementation; in this case Multichain, which is a
private blockchain based on Bitcoin with interesting new features implemented like data streams and

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 83 of 96 Submission date: 2017-07-17

managed permissions. Since it´s a private blockchain there is no need for mining which is an important
aspect to have into account, as transactions will have no cost if desired.

 IPR, Confidentiality and Data integrity 6.1.2.1

In the case of protecting IPR, COMPOSITION proposal is to use the blockchain to get a digital certificate of
authentication for any kind of digital document without storing the document itself in anyway in the
blockchain. The next figure is an overview of the architecture.

Figure 57. IPR Service.

The method to obtain a certificate for a document is pretty simple:

1. Upload document

2. IPR service calculate hash and store in blockchain

3. Return hash

The following figure depicts the process in detail:

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 84 of 96 Submission date: 2017-07-17

Figure 58. IPR Service sequence diagram.

The method to check if a document existed at any given time is fairly simple also. The steps are the
following:

1. Upload document

2. IPR service calculate hash

3. IPR service checks hash in block chain

4. Return date if found

To ensure Confidentiality, Data Integrity and also IPR of the messages/data sent across the platform using
RabbitMQ message broker Multichain will be used in a similar way as with the certificate of authentication
explained before. It´s important to note that, as in the previous case the message or data itself it´s not stored
in the blockchain. The architecture can be depicted in the following figure:

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 85 of 96 Submission date: 2017-07-17

Figure 59. Blockchain used for distributed trust in messaging.

Before sending any message/data a publisher must first sign the message/data using a service created for
that purpose. Afterwards it can send the message using RabbitMQ message broker. Any subscriber
receiving the message can check if the data has been modified in any way and ensure that is coming from
where it is assumed. This is done by uploading the message/data in the service which will calculate the hash
and will check if the same hash it´s already in the blockchain. The following figure depicts the whole
procedure in detail:

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 86 of 96 Submission date: 2017-07-17

Figure 60. Sequence diagram of integrating blockchain in message sending.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 87 of 96 Submission date: 2017-07-17

 Log and Traceability 6.1.2.2

Multichain will also be used to provide an audit trail for manufacturing and supply chain data enabling both
product data traceability and secure access for stakeholders. An approach of the architecture to be used is
shown in the following figure.

Figure 61. Blockchain in manufacturing process.

The idea is to have multiple blockchain nodes along the whole manufacturing process with a central node.
Each node in the chain will make a transaction to the next node with the data available at each stage of the
process. Each node will add its own data to the one received from the previous node. As each transaction is
stored in the blockchain by the end of the manufacturing process it will be possible to have a clear overview
of what happened on each of the steps.

An advantage of this approach is that since the blockchain acts like a network of replicated databases, this
means all nodes have exactly the same information; it’s very difficult that a problem in the system may cause
the loss of data. The failure of a node it´s not a big problem either, as replacing a node it´s really easy and as
soon as it is connected to the network all data will be replicated on it.

It should be also considered only to store relevant data in each transaction while all other data is stored on
an external database and linked to the data in the blockchain.

6.1.3 Cyber-Security

Cybersecurity is another key aspect on COMPOSITION. The deployment of Atos SIEM and the Cyber-
Agents it will ensure the security monitoring and protection against potential threats such as abuse of
privileges or denial of access among others. A Cyber-Agent is deployed on each system to be monitored. All
events are sent to the SIEM which will collect and analyze the security events and will raise an alert in case
of a potential risk. The SIEM supports several ways of communication to obtain the events from the Cyber-
Agents, in case of COMPOSITION as the system already uses RabbitMQ it has been decided to use it as
the communication channel. The next figure is an overview of the architecture:

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 88 of 96 Submission date: 2017-07-17

Figure 62. Cyber-security components.

6.1.4 Transport Layer

All communication between COMPOSITION components should be encrypted using TLS/SSL where
possible. In case of web applications and services its planned to use Nginx as a reverse proxy, with this
approach all applications and services can run their own web servers and do not need to implement
TLS/SSL on their own ad Nginx will take care of it. In the case of RabbitMQ message broker it needs to be
configured to allow encrypted message transactions.

6.2 Scalability Perspective

This section describes scalability concerns and how the chosen design decisions and mechanisms can
adopt measures to address these concerns. At the time of writing this report, scalability concerns and
scenarios has not yet been addressed for all components. The described approach will be applied to the
components and to the system in future work and reported in the updated version of this document M24.

6.2.1 Basic Concepts and Terminology

 Nodes, Resources and Scalability 6.2.1.1

As described in the Deployment View, each component will run in a Docker container; a virtual
computational resource (node) with a certain specified computing and/or storage capacity. Other examples
of nodes are physical servers, cloud services and execution containers in the cloud.

Computational resources are thus constrained by the amount allocated to the node with the limitations of the
docker host being the upper limit, which means the physical specification of the hardware if this is a locally
hosted deployment or in the case of cloud based provisioning by the corresponding SLAs (Service Level
Agreements).

For the sake of clarity, we would like to differentiate between performance and scalability. By performance
we refer to the capability of a system to provide a certain response time with a given set of nodes and
resources, e.g., to serve a defined number of users or processes a certain amount of data from a server with
a certain capacity specification. Although no standard definition is available for these terms (Lehrig, Eikerling,
& Becker, 2015), most of the available literature uses a similar definition for performance, e.g. (Wilder, 2012)
where it is defined as “… an indication of the responsiveness of a system to execute any action within a
given time interval”.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 89 of 96 Submission date: 2017-07-17

Scalability we would like to define in analogous to the definition in (Lehrig, Eikerling, & Becker, 2015) as the
ability of a system to increase the maximum workload it can handle by expanding its quantity of consumed
resources. Similar definitions are “the ability of a system either to handle increases in load without impact on
performance or for the available resources to be readily increased” (Wilder, 2012) or “the capability of a
system, network, or process to handle a growing amount of work, or its potential to be enlarged in order to
accommodate that growth” (Bondi, 2000).

Scaling is thus about allocating more resources for an application, i.e., resource provisioning. In this
discussion, we assume that the system has been designed to use the available resources as efficiently as
possible i.e., by maximizing the performance with a given set of resources. Examples of resources needed
by an application usually include CPU, memory, disk (capacity and throughput), and network bandwidth. An
application or service is said to be scalable if when we increase the resources in a system, it results in
increased performance in a manner proportional to resources added. Resources can be handled in
scalability units, i.e., groups of resources that could be scaled together.

 Vertical/Horizontal scaling 6.2.1.2

The scaling discussed here concerns the steps that may be taken when the available resources run out and
the application does not fulfil its functional or non-functional requirements - the maximum workload of the
system with the given resources is reached. We may then scale the system to increase the maximum
workload it can handle by expanding its quantity of available resources. We can increase the quantity of
consumed resources by increasing the amount of resources within existing nodes, or by adding more nodes.

To scale up (or scale vertically) is to increase overall application capacity by increasing the resources within
existing nodes. In COMPOSITION, e.g., increasing the capacity of the node running the message broker in
the IIMS. (For a Docker container, this can be achieved by using options such as “--cpus” and “--memory-
reservation”.).

Figure 63. Boost capacity of node, scale up.

Scaling up is usually the simplest and cheapest solution, as is does not require any changes to the design,
code details or deployment of the application. While less complex (and sometimes cheaper compared to re-
design or code improvements to increase performance) there are limitations to this approach compared to
scaling out.

To scale out (or scale horizontally) is to increase overall application capacity by adding nodes, e.g., adding
an additional message broker to the IIMS. (For Docker, this can be achieved by using options such as “--
scale” or using docker swarm.)

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 90 of 96 Submission date: 2017-07-17

Figure 64. Scale out by adding nodes for component.

Scaling out increases the overall application capacity by adding entire new computational nodes. Scaling out
tends to be more complex than scaling up, and has more impact on the application architecture. We may
scale out a COMPOSITION system instance by adding nodes for specific components (e.g., a Match Maker)
and implement support for this at the component level. In the case of horizontal scaling, the system should
also be able to adapt to shrinking demand for resources, to scale in. This property is often referred to as
elasticity (Lehrig, Eikerling, & Becker, 2015).

When all the nodes supporting a specific function are configured identically - same hardware resources,
same operating system, same function-specific software - we say these nodes are homogeneous

29
. We

would add that components executing on different nodes may be homogenous with regards to functionality –
all nodes support the same functions – and data or state – all nodes share the same data. This has
implications on the design of horizontal scaling.

An autonomous node does not know about other nodes of the same type, similarly the same term can also
be used for components.

In COMPOSITION, we will not test scalability by creating a model of the system and performing simulations.
The approach we will take is to identify the scalability issues by analysis of deployed capacity, against
application performance requirements, identifying scenarios where the maximum workload may exceed the
capability of the system or components, investigate common design patterns for how these scenarios may
be addressed, and, determine how the design of components deals with scaling up and out.

6.2.2 Issue identification and analysis

In this section, we list a number of scalability quality attribute scenarios where a high value of the attribute
may cause the workload to exceed the maximum that the system or individual components can handle.
Common design patterns to address these problems are described. The component designs and
architectural decisions are described from a scalability viewpoint; the possible bottlenecks of each
component, the possibility of scaling up or out, and the design implications. The work on this has just started
at the time of writing and the section will be revised in the updated version of this document M24.

6.2.3 Scenarios for scalability requirements of the system

 Attributes that may affect workload of system or components 6.2.3.1

 Factory IIMS

o The number of concurrently reporting sensors/field devices

o The number of concurrently reporting BDA and ANN generated data streams

o The number of generated data that should be persistently stored in the system (for future
deep learning network training or in the blockchain

 Number of generated data streams

29

 Wilder, Bill. Cloud Architecture Patterns: Using Microsoft Azure. Sebastapol, CA: O'Reilly Media, Inc., 2012

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 91 of 96 Submission date: 2017-07-17

 Number of observations

o The number of concurrent queries for stored data

 Marketplace

o The number of concurrent agent negotiations.

o The number of concurrent requests for Matchmaker services

o The number of concurrent requests for block chain storage

 Performance attributes affected 6.2.3.2

 Response time

o Service time - how long it takes to do the work requested.

o Wait time - how long the request has to wait for requests queued ahead of it before it
gets to run.

o Transmission time – How long it takes to move the request to the computer doing the
work and the response back to the requestor.

 Throughput

o The amount of work accomplished in a given amount of time.

 Resource usage

o CPU usage

o Memory usage

o Storage usage

o Network usage - data sent and received

6.2.4 Performance and Scalability Design

Some examples of common design patterns used for performance and scalability are summarized here for
convenience so that they may be referenced in the component scalability design section. More
comprehensive descriptions may be found in e.g. (Wilder, 2012), (Homer, Sharp, Brader, & Swanson, 2014)
or (Fowler, 2002).

 Caching 6.2.4.1

When certain sets of data are frequently accessed, these may be copied to fast storage located close to the
requesting application. E.g. since REST interfaces are employed for request response communication, HTTP
caching may be used to avoid unnecessary load on the system by caching data at the HTTP client. Caching
can also be performed in the Intra-factory Interoperability Layer or the Broker.

 Materialized Views 6.2.4.2

HMI and other components may have need for views on data that is not stored or formatted in a way optimal
for the query required to produce this view. The system may then generate prepopulated views over the
data, possibly cached locally at the requesting node.

 Throttling 6.2.4.3

To avoid that a single application or input source degrades the entire system, the services provided by the
system may be temporarily limited. E.g. an agent sending a lot of requests may get a “503 Service
Unavailable” response telling it to wait, or some functionality of the Marketplace or IIMS may be prioritized in
case of insufficient resources.

6.2.4.3.1 Data partitioning

Data stored or processed in the system may be physically divided into separate nodes, so that they are not
homogenous with respect to the data they manage. Using horizontal partitioning, the nodes may use the

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 92 of 96 Submission date: 2017-07-17

same schema but hold different parts of the data (e.g. different big data analytics nodes may process the
same type of data but from different sources). With vertical partitioning, nodes will hold different parts of the
schema, e.g. a broker instance may process only request-response type messaging or a storage node may
only hold observation data. When different parts of the schema are handled by different nodes based on
business or usage context, the term functional partitioning is sometimes used.

 Load balancing 6.2.4.4

When the maximum workload of a single component is reached, redundant deployments of the component
are created and a load balancing system dynamically distributes workloads. If the component works without
state between calls and function calls are idempotent, this strategy is easier to implement.

 Queue based load levelling and competing consumers 6.2.4.5

Instead of passing requests directly on to other components, a message queue can be used to implement
the communication channel between the components. The sender component(s) post requests in the form of
messages to the queue, and the consumer component(s) receive messages from the queue and process
them, each at its own pace. This way, fluctuations in workload and differences in throughput between various
parts of the system can be balanced, and individual components can be scaled out to optimize throughput.

 Local hosting vs cloud hosting 6.2.4.6

The COMPOSITION system may be hosted, in whole or in parts, on physical or virtual hardware, in an
environment owned and operated by a business (e.g. for a private marketplace) or in a cloud environment
(e.g. Amazon, Azure).

Depending of the choice of hosting it may be possible to scale up or out automatically. In any case and at the
very least, the components need to be able to indicate, when queried or by events, that the capacity limit is
being reached. The systems administrator or an auto-scale component may use this information to start
provisioning new resources. When automatically scaling out, the component should also be able to be elastic
and scale in if there is less demand for resources.

6.2.5 COMPOSITION Scalability Design

As a result of scalability analysis, we will describe how the system components and the architectural
mechanisms may be affected by the scenarios and how the design of the component or the choice of design
and implementation mechanism makes use of added resources to make the system scalable. Scalability is
primarily discussed at component level. The scalability analysis is still in progress at the time of writing and
will be updated in the future revision of this document.

Some short preliminary results may be reported:

Blockchains that use proof-of-work mechanisms and use a global chain are hard to scale. The chosen
implementation mechanism (Multichain), however, is configurable for consortium or private use, where proof-
of-work is not needed. This greatly speeds up the generation of new block and thus the time to accept new
transactions. Multichain also allows for the creation of several parallel chains, which allows for horizontal or
vertical partitioning of the log.

For the data persistence solution (section 5.4.2), horizontal partitioning may be used to reduce the disk size
of storage instances. If the number of concurrent requests for stored data is high, redundant storage behind
a load-balancer may be used.

The centralized communication design using the message broker risks introducing a bottle neck in the
design. However, clustering of brokers behind a load-balancing system is a triad approach to this problem.
The chosen implementation (RabbitMQ) is also available as dynamically scalable cloud service. This
approach is also applicable to the Matchmaker, which also may become a frequently requested resource in
the agent marketplace.

Docker supports control of both horizontal and vertical scaling of containers. It also makes migration of
containers to more capable hardware and re-configuration components to implement strategies such as
queue based load levelling or load-balancing easy compared to installations on virtual machines.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 93 of 96 Submission date: 2017-07-17

7 Summary and future work

The architecture work has so far been performed in a bottom-up approach, extending the inception work
presented in the project specification. Components have been identified, mechanisms evaluated and
selected, the general functional decomposition has been set and the use and dependencies of models in the
system investigated. A unified end-to-end security framework has been designed which aligns with the
architecture. The architecture work is expected to move to a top-down approach as the component designs
mature. Workshops evaluating architecture perspectives such as security, scalability and evolution will be
held, possibly also architecture evaluations. The RAMI4.0 alignment, important to the dissemination of the
project, and FIWARE and FITMAN extension and integration will also be further developed.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 94 of 96 Submission date: 2017-07-17

8 References

Bondi, A. (2000). Characteristics of scalability and their impact on performance. Proceedings of the second
international workshop on Software and performance - WOSP '00.

COMPOSITION. (2016). GRANT AGREEMENT 723145 — COMPOSITION: Annex 1 Research and
innovation action.

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison Wesley.
Homer, A., Sharp, J., Brader, L. N., & Swanson, T. (2014). Cloud Design Patterns. Microsoft patterns &

practices.
IEC. (2013). IEC 62890: IEC Project: Life Cycle Management for Systems and Products used in Industrial-

Process Measurement, Control, and Automation. IEC.
IEC62264. (2013). IEC 62264-1: Enterprise-control system integration Part 1: Models and Terminology. IEC.
IEEE. (2000). IEEE 1471 Recommended Practice for Architectural Description for Software Intensive

Systems. IEEE.
ISO/IEC/IEEE42010. (2011). ISO/IEC 42010: Systems Engineering – Architecture description.

ISO/IEC/IEEE.
ISO19156. (2011). Geographic information -- Observations and measurements. ISO.
Kruchten, P. (2004). The Rational Unified Process: An Introduction. Addison-Wesley Professional.
Lehrig, S., Eikerling, H., & Becker, S. (2015). Scalability, Elasticity, and Efficiency in Cloud Computing: a

Systematic Literature Review of Definitions and Metrics. Proceedings of the 11th International ACM
SIGSOFT Conference on Quality of Software Architectures (QoSA '15), Montreal, QC, Canada, May
4–7.

Rozanski, N., & Woods, E. (2012). Software Systems Architecture,: working with stakeholders using
viewpoints and perspectives. Addison-Wesley.

(2015). Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0). Düsseldorf: VDI e.V.
Wilder, B. (2012). Cloud Architecture Patterns. O'Reilly.
Y.2060, I.-T. (2012). ITU-T Y.2060 : Overview of the Internet of things. ITU.

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 95 of 96 Submission date: 2017-07-17

9 List of Figures and Tables

9.1 Figures

Figure 1. ISO/IEC/IEEE 42010 Architecture Description Conceptual Model. ... 8
Figure 2. The three dimensions of the RAMI 4.0. (Status Report Reference Architecture Model Industrie 4.0
(RAMI4.0), 2015). .. 9
Figure 3. The IT Layers of RAMI 4.0. .. 10
Figure 4. Hierarchy Levels of RAMI 4.0 (Status Report Reference Architecture Model Industrie 4.0
(RAMI4.0), 2015). .. 11
Figure 5. Type and instance lifecycles in RAMI 4.0 (Status Report Reference Architecture Model Industrie
4.0 (RAMI4.0), 2015). .. 12
Figure 6. The I4.0 component (Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0), 2015).
 ... 13
Figure 7. The strategical and technical objectives of COMPOSITION. ... 16
Figure 8. Composition conceptual architecture. .. 19
Figure 9. The COMPOSITION system context view. .. 21
Figure 10. The logic architecture of a COMPOSITION marketplace. ... 22
Figure 11. High-level functional view of COMPOSITION architecture. ... 24
Figure 12. A mapping of COMPOSITION functional packages to the RAMI 4.0 Layers. 26
Figure 13. Simple queuing. .. 27
Figure 14. Publish-subscribe. .. 28
Figure 15. Remote Procedure Call. ... 28
Figure 16. Intra-factory interoperability layer components and dependencies.. 29
Figure 17. IoT Hub component architecture. ... 31
Figure 18. Components and interactions of the BMS: LinkSmart middleware, Configuration Shell, BMS
(Building Management System), RAMI Administration Shell. ... 32
Figure 19. LinkSmart® Learning Service Architecture Sketch. ... 33
Figure 20. LinkSmart® Learning Service Enabling Use Cases. .. 34
Figure 21. Deep Learning Toolkit interactions. .. 35
Figure 22. Offline training sequence diagram. .. 36
Figure 23. Online forecasting sequence diagram. ... 37
Figure 24. Design and dependencies of the Decision Support System (DSS): LinkSmart middleware,
DataBase, Digital Factory Model (DFM), Simulation and Forecasting Tool, DeepLearning Toolkit, Visual
Analytics (VA). ... 38
Figure 25. Typical protocol execution. ... 40
Figure 26. The Simulation and Forecasting Tool and dependencies: LinkSmart middleware, DataBase,
Digital Factory Model (DFM), Decision Support System (DSS) and Visual Analytics (VA). 40
Figure 27. COMPOSITION Matchmaker component diagram. ... 42
Figure 28. Marketplace components. .. 43
Figure 29. CONTRACT-NET protocol execution. .. 46
Figure 30. CONTRACT-NET activity diagram at the requester side. .. 47
Figure 31. Reputation gathering activity. ... 48
Figure 32. Reputation reporting activity, with possible lies. ... 49
Figure 33. Information routing behaviour of the Requester agent. .. 50
Figure 34. The initial behaviour specification for the COMPOSITION Requester agent. 51
Figure 35. CONTRACT-NET activity diagram for the Supplier Agent. .. 52
Figure 36. The initial behaviour specification for the COMPOSITION Supplier agent. 52
Figure 37. Marketplace Management component. .. 53
Figure 38. The Marketplace Management use cases. .. 54
Figure 39. Initial Marketplace Portal mock-up and navigation... 55
Figure 40. Components of the Security Framework. ... 56
Figure 41. Keycloak administration interface... 57
Figure 42. Dependencies of data models used in the system... 59
Figure 43. Initial BPMN diagram of BSL production line. .. 60
Figure 44. High level structure of COMPOSITION DFM XML schema. .. 61
Figure 45. High level COMPOSITION Ontology class diagram. ... 68
Figure 46. OGC SensorThings Data Model... 69

COMPOSITION D2.3 The COMPOSITION architecture specification I

Document version: 1.1 Page 96 of 96 Submission date: 2017-07-17

Figure 47. Deep Learning Toolkit: online continuous learning model as activity diagram. 72
Figure 48. High-level data flow (UML Interaction Diagram) between marketplace actors in a simple contract-
net exchange. .. 74
Figure 49. Sequence diagram showing the information flow between to agents during a successful
negotiation. .. 75
Figure 50. Data flow for "dumb" or default agents. .. 76
Figure 51. Data routing information flow. ... 77
Figure 52. Personal opinion sharing between agents. .. 78
Figure 53. Communication channels between the IIMS and the factory agent. .. 79
Figure 54. Example of Docker Management platform showing a set of deployed containers. 80
Figure 55. Example of single container monitoring. .. 81
Figure 56. The Authentication and Authorization framework. ... 82
Figure 57. IPR Service... 83
Figure 58. IPR Service sequence diagram. ... 84
Figure 59. Blockchain used for distributed trust in messaging. ... 85
Figure 60. Sequence diagram of integrating blockchain in message sending. ... 86
Figure 61. Blockchain in manufacturing process. .. 87
Figure 62. Cyber-security components. ... 88
Figure 63. Boost capacity of node, scale up. .. 89
Figure 64. Scale out by adding nodes for component. .. 90

9.2 Tables

Table 1. COMPOSITION-specific terminology. ... 5
Table 2. Matchmaker Main APIs. .. 43
Table 3. AMS services. .. 44
Table 4. CXL message structure. .. 62

